OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 27 — Sep. 20, 2013
  • pp: 6771–6775

Frequency dependence of slab coupled optical sensor sensitivity

Spencer Chadderdon, Bradley M. Whitaker, Eric Whiting, Daniel Perry, Richard H. Selfridge, and Stephen M. Schultz  »View Author Affiliations

Applied Optics, Vol. 52, Issue 27, pp. 6771-6775 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (659 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents the frequency-dependent sensitivity of slab-coupled optical fiber sensors (SCOSs). This dependence is caused by the frequency characteristics of the relative permittivity. We show experimentally the frequency dependence of SCOS sensitivity for frequencies in the range of 1 kHz to 1 MHz for SCOS fabricated with both potassium titanyl phosphate (KTP) and lithium niobate (LiNbO3). We conclude that x-cut KTP SCOSs are preferred for measuring fields above 300 kHz as they are 1.55× more sensitive than x-cut LiNbO3 SCOSs to the higher frequency fields. However, since KTP SCOSs experience increasing permittivity for low frequencies, SCOSs made with LiNbO3 may be used for low frequency sensing applications due to their flat sensitivity response. For a 10 kHz electric field, an x cut LiNbO3 SCOS is approximately 3.43× more sensitive than an x-cut KTP SCOS.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.2100) Materials : Electro-optical materials
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 13, 2013
Manuscript Accepted: August 9, 2013
Published: September 18, 2013

Spencer Chadderdon, Bradley M. Whitaker, Eric Whiting, Daniel Perry, Richard H. Selfridge, and Stephen M. Schultz, "Frequency dependence of slab coupled optical sensor sensitivity," Appl. Opt. 52, 6771-6775 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139–2144 (2007). [CrossRef]
  2. R. Gibson, R. Selfridge, and S. Schultz, “Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides,” Appl. Opt. 48, 3695–3701 (2009). [CrossRef]
  3. R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240 (2008). [CrossRef]
  4. J. Noren, “Electric field sensing in a railgun using slab coupled optical fiber sensors,” M.S. thesis (Brigham Young University, 2012).
  5. B. Shreeve, R. Gibson, D. Perry, D. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Non-intrusive field characterization in interior cavities with slab coupled optical sensor,” J. Dir. Energy 19, 69–72 (2010).
  6. S. Chadderdon, L. Woodard, D. Perry, R. H. Selfridge, and S. M. Schultz, “Single tunable laser interrogation of slab-coupled optical sensors through resonance tuning,” Appl. Opt. 52, 2682–2687 (2013). [CrossRef]
  7. D. Perry, S. Chadderdon, R. Forber, W. Wang, R. Selfridge, and S. Schultz, “Multiaxis electric field sensing using slab coupled optical sensors,” Appl. Opt. 52, 1968–1977 (2013). [CrossRef]
  8. J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986). [CrossRef]
  9. K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000). [CrossRef]
  10. C. R. Miller, “Electromagnetic pulse threats in 2010,” (Center for Strategy and Technology, Air War College, Air University, Maxwell AFB, AL, 2005).
  11. A. E. Zielinski and C. D. Le, “In-bore electric and magnetic field enviroment,” IEEE Trans. Magn. 35, 457–462 (1999). [CrossRef]
  12. K. T. Kim, D. S. Yoon, and G. Kwoen, “Optical properties of side-polished polarization maintaining fiber coupled with a high index planar waveguide,” Opt. Commun. 230, 137–144 (2004). [CrossRef]
  13. C. A. Millar, M. C. Brierley, and R. S. Mallinson, “Exposed-core single-mode-fiber channel-dropping filter using high-index overlay waveguide,” Opt. Lett. 12, 284–286 (1987). [CrossRef]
  14. S. Chadderdon, L. Woodard, D. Perry, R. H. Selfridge, and S. M. Schultz, “Improvements in electric field sensor sensitivity by exploiting a tangential field condition,” Appl. Opt. 52, 5742–5747 (2013). [CrossRef]
  15. S. Chadderdon, R. Gibson, R. H. Selfridge, S. M. Schultz, W. C. Wang, R. Forber, J. Luo, and A. K. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011). [CrossRef]
  16. R. W. Boyd, Nonlinear Optics (Academic, 2003), p. 578.
  17. J. Kerr, “On rotation of the plane of polarization by reflection from the pole of a magnet,” Philos. Mag. Lett. 3, 321–343 (1877).
  18. J. Kerr, “On reflection of polarized light from the equatorial surface of a magnet,” Philos. Mag. Lett. 5, 161–171 (1878).
  19. F. T. Ulaby, Fundamentals of Applied Electromagnetics (Pearson, 2004).
  20. S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993). [CrossRef]
  21. A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985). [CrossRef]
  22. Y. Ohmachi, K. Sawamoto, and H. Toyoda, “Dielectric properties of LiNbO3 single crystal up to 9 Gc,” Jpn. J. Appl. Phys. 6, 1467–1468 (1967).
  23. Casix, “Lithium niobate crystal series,” 2013, http://www.fabrinet.co.th/custappl/casix/aa/product/prod_cry_linbo3.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited