OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 27 — Sep. 20, 2013
  • pp: 6813–6823

Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser

Vinay V. Alexander, Zhennan Shi, Mohammed N. Islam, Kevin Ke, Galina Kalinchenko, Michael J. Freeman, Agustin Ifarraguerri, Joseph Meola, Anthony Absi, James Leonard, Jerome A. Zadnik, Anthony S. Szalkowski, and Gregory J. Boer  »View Author Affiliations


Applied Optics, Vol. 52, Issue 27, pp. 6813-6823 (2013)
http://dx.doi.org/10.1364/AO.52.006813


View Full Text Article

Enhanced HTML    Acrobat PDF (1124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Field trial results of a 5 W all-fiber broadband supercontinuum (SC) laser covering the short-wave infrared (SWIR) wavelength bands from 1.55 to 2.35 μm are presented. The SC laser is kept on a 12 story tower at the Wright Patterson Air Force Base and propagated through the atmosphere to a target 1.6 km away. Beam quality of the SC laser after propagating through 1.6 km is studied using a SWIR camera and show a near diffraction limited beam with an M2 value of <1.3. The SC laser is used as the illumination source to perform spectral reflectance measurements of various samples at 1.6 km, and the results are seen to be in good agreement with in-lab measurements using a conventional lamp source. Spectral stability measurements are performed after atmospheric propagation through 1.6 km and show a relative variability of 4%8% across the spectrum depending on the atmospheric turbulence effects. Spectral stability measurements are also performed in-lab and show a relative variability of <0.6% across the spectrum.

© 2013 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6340) Spectroscopy : Spectroscopy, infrared
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: July 3, 2013
Revised Manuscript: August 20, 2013
Manuscript Accepted: August 22, 2013
Published: September 19, 2013

Citation
Vinay V. Alexander, Zhennan Shi, Mohammed N. Islam, Kevin Ke, Galina Kalinchenko, Michael J. Freeman, Agustin Ifarraguerri, Joseph Meola, Anthony Absi, James Leonard, Jerome A. Zadnik, Anthony S. Szalkowski, and Gregory J. Boer, "Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser," Appl. Opt. 52, 6813-6823 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-27-6813


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012). [CrossRef]
  2. S. D. Jackson, “High-power fiber lasers for the shortwave infrared,” Proc. SPIE 7686, 768608 (2010). [CrossRef]
  3. M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008). [CrossRef]
  4. J. H. Taylor and H. W. Yates, “Atmospheric transmission in the infrared,” J. Opt. Soc. Am. 47, 223–225 (1957). [CrossRef]
  5. R. N. Lane, “The SWIR advantage,” Proc. SPIE, 2555, 246–254 (1995). [CrossRef]
  6. K. Kraus and N. Pfeifer, “Determination of terrain models in wooded areas with airborne laser scanner data,” ISPRS J. Photogramm. Remote Sens. 53, 193–203 (1998). [CrossRef]
  7. J. Hyyppä, O. Kelle, M. Lehikoinen, and M. Inkinen, “A segmentation based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners,” IEEE Trans. Geosci. Remote Sens. 39, 969–975 (2001). [CrossRef]
  8. N. Haala and C. Brenner, “Extraction of buildings and trees in urban environments,” ISPRS J. Photogramm. Remote Sens. 54, 130–137 (1999). [CrossRef]
  9. S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral LIDAR: measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Geosci. Remote Sens. Lett. S4, 211–215 (2007). [CrossRef]
  10. G. Bishop, I. V. Veiga, M. Watson, and L. Farr, “Active spectral imaging for target detection,” in proceedings of the 4th EMRS DTC Technical Conference, Edinburgh (2007).
  11. M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).
  12. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral lidar for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012). [CrossRef]
  13. Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010). [CrossRef]
  14. R. Ceolato, N. Riviere, and L. Hespel, “Reflectances from a supercontinuum laser-based instrument: hyperspectral, polarimetric, and angular measurements,” Opt. Express 20, 29413–29425 (2012). [CrossRef]
  15. C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008). [CrossRef]
  16. G. A. Shaw and H.-H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).
  17. C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009). [CrossRef]
  18. J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013). [CrossRef]
  19. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012). [CrossRef]
  20. A. Tunick, N. Tikhonov, M. Vorontsov, and G. Carhart, “Characterization of optical turbulence (cn2) data measured at the ARL A_LOT facility,” ARL-MR-625 (2005).
  21. J. Davis, “Consideration of atmospheric turbulence in laser systems design,” Appl. Opt. 5, 139–148 (1966). [CrossRef]
  22. M. C. Roggemann and D. J. Lee, “Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere,” Appl. Opt. 37, 4577–4585 (1998). [CrossRef]
  23. X.-C. Tan, Z.-C. Wu, and Z. Liang, “Effect of adaptive optical system on the capability of LIDAR detection in atmosphere,” Proc. SPIE 7284, 72840G (2009). [CrossRef]
  24. D. N. Loizos, L. Liu, P. P. Sotiriadis, G. Cauwenberghs, and M. A. Vorontsov, “Integrated multi-dithering controller for adaptive optics,” Proc. SPIE 6708, 67080B (2007). [CrossRef]
  25. B. Shiner, retrieved http://www.photonics.com/Article.aspx?AID=25158 .
  26. X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011). [CrossRef]
  27. “Introduction to solar radiation,” retrieved http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx .
  28. N. S. Kopeika, A System Engineering Approach to Imaging, Technology & Engineering (SPIE, 1998).
  29. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in their wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977). [CrossRef]
  30. V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2–2.5 micron with near diffraction limited beam and low output variability,” Opt. Lett. 38, 2292–2294 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited