OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 28 — Oct. 1, 2013
  • pp: 6877–6883

Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect

Christian Lingel, Tobias Haist, and Wolfgang Osten  »View Author Affiliations


Applied Optics, Vol. 52, Issue 28, pp. 6877-6883 (2013)
http://dx.doi.org/10.1364/AO.52.006877


View Full Text Article

Enhanced HTML    Acrobat PDF (745 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fringing field effect of liquid-crystal displays causes a crosstalk between neighboring pixels, so that a desired sharp phase edge gets blurred. This blurring effect influences the diffraction efficiency of holograms, which are displayed on the spatial light modulator (SLM). In this paper, we show two different simulation models for the SLM, one based on the measured subpixel Jones matrices of the SLM and the other based on a direction-dependent convolution model. Using these models we optimize different blazed gratings written in the SLM according to their diffraction efficiency followed by an experimental verification.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.3720) Optical devices : Liquid-crystal devices
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 6, 2013
Revised Manuscript: August 26, 2013
Manuscript Accepted: August 26, 2013
Published: September 25, 2013

Citation
Christian Lingel, Tobias Haist, and Wolfgang Osten, "Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect," Appl. Opt. 52, 6877-6883 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-28-6877


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. H. Barnes, T. Eiju, and K. Matusda, “Phase-only modulation using a twisted nematic liquid crystal television,” Appl. Opt. 28, 4845–4852 (1989). [CrossRef]
  2. W. Osten and W. P. O. Jueptner, “New light sources and sensors for active optical 3D inspection,” Proc. SPIE 3897, 314–327 (1999). [CrossRef]
  3. J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000). [CrossRef]
  4. D. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  5. S. Fürhapter, A. Jesacher, A. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689–694 (2005). [CrossRef]
  6. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009). [CrossRef]
  7. F. Schaal, M. Warber, C. Rembe, T. Haist, and W. Osten, “Dynamic multipoint vibrometry using spatial light modulators,” Proc. Fringe 2009, 529–531 (2009).
  8. T. Haist, C. Lingel, W. Osten, M. Winter, M. Giesen, F. Ritter, and C. Rembe, “Advanced multipoint vibrometry using spatial light modulators,” AIP Conf. Proc. 1457, 234–241 (2012). [CrossRef]
  9. T. Haist, C. Lingel, W. Osten, C. Rembe, M. Winter, and M. Giesen, “SLM-based multipoint vibrometry,” in Optical Sensors (Optical Society of America, 2012), paper SM2F.1.
  10. S. Zwick, M. Warber, T. Haist, F. Schaal, W. Osten, S. Boedecker, C. Rembe, and E. P. Tomasini, “Advanced scanning laser-Doppler vibrometer with computer generated holograms,” AIP Conf. Proc. 1253, 279–290 (2010). [CrossRef]
  11. J. Liesener, M. Reicherter, and H. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161–166 (2004). [CrossRef]
  12. M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68–78 (2004). [CrossRef]
  13. C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48, 4003–4008 (2009). [CrossRef]
  14. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45, 960–967 (2006). [CrossRef]
  15. T. Baumbach, W. Osten, C. von Kopylow, and W. Jüptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006). [CrossRef]
  16. H. Dammann, “Spectral characteristic of stepped-phase gratings,” Optik 53, 409–417 (1979).
  17. S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt. 49, F47–F58 (2010). [CrossRef]
  18. T. Haist, S. Zwick, M. Warber, and W. Osten, “Spatial light modulators—versatile tools for holography,” J. Holography Speckle 3, 125–136 (2006). [CrossRef]
  19. U. Efron, B. Apter, and E. Bahat-Treidel, “Fringing-field effect in liquid-crystal beam-steering devices: an approximate analytical model,” J. Opt. Soc. Am. A 21, 1996 (2004). [CrossRef]
  20. K.-H. Fan Chiang, S.-T. Wu, and S.-H. Chen, “Fringing field effect of the liquid-crystal-on-silicon devices,” Jpn J. Appl. Phys. 41, 4577–4585 (2002). [CrossRef]
  21. K.-H. Fan Chiang, S.-T. Wu, and S.-H. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1, 304–313 (2005). [CrossRef]
  22. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004). [CrossRef]
  23. E. Bahat-Treidel, B. Apter, and U. Efron, “Experimental study of phase-step broadening by fringing fields in a three-electrode liquid-crystal cell,” Appl. Opt. 44, 2989–2995 (2005). [CrossRef]
  24. M. Persson, D. Engström, and M. Goksör, “Reducing the effect of pixel crosstalk in phase only spatial light modulators,” Opt. Express 20, 22334–22343 (2012). [CrossRef]
  25. M. Persson, D. Engström, J. Bengtsson, and M. Goksör, “Realistic treatment of spatial light modulator pixelation in real-time design algorithms for holographic spot generation,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DWC32.
  26. L. J. Friedman, D. S. Hobbs, S. Lieberman, D. L. Corkum, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and T. A. Dorschner, “Spatially resolved phase imaging of a programmable liquid-crystal grating,” Appl. Opt. 35, 6236–6240 (1996). [CrossRef]
  27. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  28. C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48, 044002 (2009). [CrossRef]
  29. K. Leonhardt, “Kontrast, Helligkeit und Streifenversetzung in Interferometern mit unterschiedlich polarisierten Teilstrahlen,” Ph.D. thesis (University Stuttgart, 1972).
  30. A. Lizana, N. Martín, M. Estapé, E. Fernández, I. Moreno, A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel, “Influence of the incident angle in the performance of liquid crystal on silicon displays,” Opt. Express 17, 8491–8505 (2009). [CrossRef]
  31. D. Leseberg, “Computer generated holograms: cylindrical, conical, and helical waves,” Appl. Opt. 26, 4385–4390 (1987). [CrossRef]
  32. N. C. Roberts, “Beam shaping by holographic filters,” Appl. Opt. 28, 31–32 (1989). [CrossRef]
  33. T. Dresel, M. Beyerlein, and J. Schwider, “Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption,” Appl. Opt. 35, 6865–6874 (1996). [CrossRef]
  34. H. Aagedal, M. Schmid, S. Egner, J. Müller-Quade, T. Beth, and F. Wyrowski, “Analytical beam shaping with application to laser-diode arrays,” J. Opt. Soc. Am. A 14, 1549–1553 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited