OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 28 — Oct. 1, 2013
  • pp: 6884–6895

Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere

Fuchao Liu and Fan Yi  »View Author Affiliations

Applied Optics, Vol. 52, Issue 28, pp. 6884-6895 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1434 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A spectrally resolved Raman lidar based on a tripled Nd:YAG laser is built for measuring gaseous and liquid water in the atmosphere. A double-grating polychromator with a reciprocal linear dispersion of 0.237nmmm1 is designed to achieve the wavelength separation and the suppression of elastic backscatter. A 32-channel linear-array photomultiplier tube is employed to sample atmospheric Raman water spectrum between 401.65 and 408.99 nm. The lidar-observed Raman water spectrum in the very clear atmosphere is nearly invariable in shape. It is dominated by water vapor, and can serve as background reference for Raman lidar identification of the phase state of atmospheric water under various weather conditions. The lidar has measured also the Raman water spectrum of an aerosol/liquid water layer. The spectrum showed a moderate increase of the signal on both sides of the Q-branch of water vapor. Noting that under clear weather conditions the Raman water spectrum intensity stays at a very low level in the 401.6–404.7 nm range, the Raman water signal in this portion can be used to estimate the liquid water content in the layer.

© 2013 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7340) Atmospheric and oceanic optics : Water

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: April 29, 2013
Revised Manuscript: August 31, 2013
Manuscript Accepted: September 2, 2013
Published: September 25, 2013

Fuchao Liu and Fan Yi, "Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere," Appl. Opt. 52, 6884-6895 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Rizi, M. Iarlori, G. Rocci, and G. Visconti, “Raman lidar observations of cloud liquid water,” Appl. Opt. 43, 6440–6453 (2004). [CrossRef]
  2. G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228, 38–65 (2004). [CrossRef]
  3. G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, and S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999). [CrossRef]
  4. U. Wandinger, “Raman lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), Chap. 9.
  5. D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42, 2593–2608 (2003). [CrossRef]
  6. C. W. Chiang, S. K. Das, J. B. Nee, S. X. Hu, and H. L. Hu, “Simultaneous measurement of humidity and temperature in the lower troposphere over Chung-Li, Taiwan,” J. Atmos. Sol-Terr. Phys. 71, 1389–1396 (2009). [CrossRef]
  7. T. Leblanc, I. S. M. McDermid, and T. D. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5, 17–36 (2012). [CrossRef]
  8. D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006). [CrossRef]
  9. J. R. Scherer, M. K. Go, and S. Kint, “Raman spectra and structure of water from −10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974). [CrossRef]
  10. G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85, 6964–6969 (1986). [CrossRef]
  11. G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986). [CrossRef]
  12. T. A. Dolenko, I. V. Churina, V. V. Fadeev, and S. M. Glushkov, “Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media,” J. Raman Spectrosc. 31, 863–870 (2000). [CrossRef]
  13. C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006). [CrossRef]
  14. D. N. Whiteman, G. E. Walrafen, W. H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999). [CrossRef]
  15. S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Li, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” J. Opt. Soc. Korea 14, 209–214 (2010). [CrossRef]
  16. D. N. Whiteman and S. H. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999). [CrossRef]
  17. S. H. Melfi, K. Evans, J. Li, D. Whiteman, R. Ferrare, and G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997). [CrossRef]
  18. I. A. Veselovskii, H. K. Cha, D. H. Kim, and J. M. Lee, “Raman lidar for the study of liquid water and water vapor in the troposphere,” Appl. Phys. B 71, 113–117 (2000). [CrossRef]
  19. Z. Wang, D. N. Whiteman, B. B. Demoz, and I. Veselovskii, “A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar,” Geophys. Res. Lett. 31, L15101 (2004). [CrossRef]
  20. O. A. Bukin, U. K. Kopvillem, S. Y. Stolyarchuk, and V. A. Tyapkin, “Investigation of Raman spectra of atmospheric gases,” J. Appl. Spectrosc. 38, 561–564 (1983). [CrossRef]
  21. D. Kim, S. Baik, H. Cha, Y. Kim, and I. Song, “Lidar measurement of a full Raman spectrum of water by using a multichannel detector,” J. Korean Phys. Soc. 54, 38–43 (2009). [CrossRef]
  22. D. Kim, I. Song, H. D. Cheong, Y. Kim, S. H. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010). [CrossRef]
  23. C. M. Yu and F. Yi, “Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements,” J. Atmos. Sol-Terr. Phys. 70, 1281–1288 (2008). [CrossRef]
  24. F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007). [CrossRef]
  25. W. N. Chen, C. W. Chiang, and J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470–6476 (2002). [CrossRef]
  26. R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971). [CrossRef]
  27. T. Murayama, M. Furushima, A. Oda, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).
  28. K. Sassen, “Polarization in lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), Chap. 2.
  29. N. Sugimoto, Z. W. Huang, T. Nishizawa, I. Matsui, and B. Tatarov, “Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer,” Opt. Express 20, 20800–20807 (2012). [CrossRef]
  30. T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited