OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 28 — Oct. 1, 2013
  • pp: 6896–6905

Experimental and numerical studies for nondestructive evaluation of human enamel using laser ultrasonic technique

Kaihua Sun, Ling Yuan, Zhonghua Shen, Qingping Zhu, Jian Lu, and Xiaowu Ni  »View Author Affiliations


Applied Optics, Vol. 52, Issue 28, pp. 6896-6905 (2013)
http://dx.doi.org/10.1364/AO.52.006896


View Full Text Article

Enhanced HTML    Acrobat PDF (837 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a nondestructive laser ultrasonic technique is used to generate and detect broadband surface acoustic waves (SAWs) on human teeth with different demineralization treatment. A scanning laser line-source technique is used to generate a series of SAW signals for obtaining the dispersion spectrum through a two-dimensional fast Fourier translation method. The experimental dispersion curves of SAWs are studied for evaluating the elastic properties of the sound tooth and carious tooth. The propagation and dispersion of SAWs in human teeth are also been studied using the finite element method. Results from numerical simulation and experiment are compared and discussed, and the elastic properties of teeth with different conditions are evaluated by combining the simulation and experimental results.

© 2013 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(170.7170) Medical optics and biotechnology : Ultrasound
(240.6690) Optics at surfaces : Surface waves
(280.3375) Remote sensing and sensors : Laser induced ultrasonics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 21, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 25, 2013
Published: September 25, 2013

Citation
Kaihua Sun, Ling Yuan, Zhonghua Shen, Qingping Zhu, Jian Lu, and Xiaowu Ni, "Experimental and numerical studies for nondestructive evaluation of human enamel using laser ultrasonic technique," Appl. Opt. 52, 6896-6905 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-28-6896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Seiwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369, 51–59 (2007). [CrossRef]
  2. A. I. Ismail, “Clinical diagnosis of precavitated carious lesions,” Community Dent. Oral Epidemiol. 25, 13–23 (1997). [CrossRef]
  3. A. I. Ismail, “Visual and visuo-tactile detection of dental caries,” J. Dent. Res. 83, C55–C66 (2004). [CrossRef]
  4. J. D. Bader, D. A. Shugars, and A. J. Bonito, “Systematic reviews of selected dental caries diagnosic and management methods,” J. Dent. Educ. 65, 960–968 (2001).
  5. L. H. He and M. V. Swain, “Nanoindentation derived stress–strain properties of dental materials,” Dent. Mater. 23, 814–821 (2007).
  6. D. Low and M. V. Swain, “Mechanical properties of dental investment materials,” J. Mater. Sci. Mater. Med. 11, 399–405 (2000). [CrossRef]
  7. L. M. Silverstone, C. A. Saxton, I. L. Dogon, and O. Fejerskov, “Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy,” Caries Res. 9, 373–387 (1975). [CrossRef]
  8. F. Lakestani, J. F. Coste, and R. Denis, “Application of ultrasonic Rayleigh waves to thickness measurement of metallic coatings,” NDT & E Int. 28, 171–178 (1995). [CrossRef]
  9. J. Goossens, P. Leclaire, X. D. Xu, and C. Glorieux, “Surface acoustic wave depth profiling of a functionally traded material,” J. Appl. Phys. 102, 053508 (2007). [CrossRef]
  10. T. T. Wu and Y. H. Liu, “Inverse determinations of thickness and elastic properties of a bonding layer using laser-generated surface waves,” Ultrasonics 37, 23–30 (1999). [CrossRef]
  11. C. Glorieux, W. Gao, S. E. Kruger, K. V. Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394–4400 (2000). [CrossRef]
  12. K. H. Sun, L. Yuan, Z. H. Shen, and X. W. Ni, “Experimental study of functionally graded materials of Fe/Al2O3 compound coatings on the steel substrate by using the laser ultrasound method,” Proc. SPIE 8192, 81922T (2011). [CrossRef]
  13. S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989). [CrossRef]
  14. K. Raum and J. Brandt, “High frequency acoustic dispersion of surface waves using time-resolved broadband microscopy,” in Proceedings of 2003 IEEE Symposium on Ultrasonics (IEEE, 2003), pp. 799–802.
  15. K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).
  16. B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).
  17. C. John, “The laterally varying ultrasonic velocity in the dentin of human teeth,” J. Biomech. 39, 2388–2396 (2006). [CrossRef]
  18. M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003). [CrossRef]
  19. C. John, “Directing ultrasound at the cemento-enamel junction (CEJ) of human teeth: I. Asymmetry of ultrasonic path lengths,” Ultrasonics 43, 467–479 (2005). [CrossRef]
  20. M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dentistry 28, 187–191 (2000). [CrossRef]
  21. C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, 1990).
  22. J. W. Wagner, J. B. Deaton, and J. B. Spicer, “Generation of ultrasound by repetitively Q-switching a pulsed Nd:YAG laser,” Appl. Opt. 27, 4696–4700 (1988). [CrossRef]
  23. J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885–1902 (2003). [CrossRef]
  24. A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992). [CrossRef]
  25. H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48, 1444–1451 (2009). [CrossRef]
  26. R. R. An, X. S. Luo, and Z. H. Shen, “Numerical simulation of the influence of the elastic modulus of a tumor on laser-induced ultrasonics in soft tissue,” Appl. Opt. 51, 7869–7876 (2012). [CrossRef]
  27. D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114, 542–549 (2003). [CrossRef]
  28. H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009). [CrossRef]
  29. H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009). [CrossRef]
  30. D. H. Hurley, S. J. Reese, S. K. Park, Z. Utegulov, J. R. Kennedy, and K. L. Telschow, “In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution,” J. Appl. Phys. 107, 063510 (2010). [CrossRef]
  31. B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006). [CrossRef]
  32. L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012). [CrossRef]
  33. H. C. Wang, S. Fleming, S. Law, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Proceedings of Australian Conference on Optical Fibre Technology/Australian Optical Society (IEEE, 2006), pp. 99–101.
  34. D. Fried, W. Seka, R. E. Glena, and J. D. B. Featherstone, “Thermal response of hard dental tissues to 9- through 11-μm CO2-laser irradiation,” Opt. Eng. 35, 1976–1984 (1996). [CrossRef]
  35. J. Arends and J. Christoffersen, “The nature of early caries lesions in enamel,” J. Dent. Res. 65, 2–11 (1986). [CrossRef]
  36. D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method for the measurement of propagating multimode signals,” J. Acoust. Soc. Am. 89, 1159–1168 (1991). [CrossRef]
  37. D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calc. Tiss. Res. 17, 129–137 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited