OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 28 — Oct. 1, 2013
  • pp: 6906–6909

Long-wavelength mid-infrared reflectors using guided-mode resonance

Kou-Wei Lai, Sheng-Di Lin, Zong-Lin Li, and Chi-Cheng Wang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 28, pp. 6906-6909 (2013)
http://dx.doi.org/10.1364/AO.52.006906


View Full Text Article

Enhanced HTML    Acrobat PDF (524 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have proposed and fabricated a new mid-infrared reflector using the guided-mode resonance (GMR). The GMR reflector consists of subwavelength Ge grating on GaAs substrate with a low-refractive-index SiOx layer in between. With a total thickness of about 2 μm, a near-100% reflectivity at 8 μm has been obtained both theoretically and experimentally.

© 2013 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.4040) Optical devices : Mirrors

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 29, 2013
Revised Manuscript: July 22, 2013
Manuscript Accepted: September 5, 2013
Published: September 26, 2013

Citation
Kou-Wei Lai, Sheng-Di Lin, Zong-Lin Li, and Chi-Cheng Wang, "Long-wavelength mid-infrared reflectors using guided-mode resonance," Appl. Opt. 52, 6906-6909 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-28-6906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photon. Rev. 4, 738–750 (2010). [CrossRef]
  2. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012). [CrossRef]
  3. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985). [CrossRef]
  4. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  5. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996). [CrossRef]
  6. S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21, 549–551 (1996). [CrossRef]
  7. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009). [CrossRef]
  8. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004). [CrossRef]
  9. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990). [CrossRef]
  10. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997). [CrossRef]
  11. K. W. Lai, Y. S. Lee, Y. J. Fu, and S. D. Lin, “Selecting detection wavelength of resonant cavity-enhanced photodetectors by guided-mode resonance reflectors,” Opt. Express 20, 3572–3579 (2012). [CrossRef]
  12. V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry-Perot resonance mechanism in high-contrast gratings,” Opt. Lett. 36, 1704–1706 (2011). [CrossRef]
  13. L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004). [CrossRef]
  14. H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “Long-wavelength quantum-dot infrared photodetectors with operating temperature over 200 K,” IEEE Photon. Technol. Lett. 21, 118–120 (2009). [CrossRef]
  15. C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetector with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013). [CrossRef]
  16. O. Parriaux, T. Kaempfe, F. Garet, and J. L. Coutaz, “Narrow band, large angular width resonant reflection from a periodic high index grid at terahertz frequency,” Opt. Express 20, 28070–28081 (2012). [CrossRef]
  17. I. R. Srimathi, M. K. Poutous, A. J. Pung, Y. Li, R. H. Woodward, E. G. Johnson, and R. Magnusson, “Mid-infrared guided-mode resonance reflectors for applications in high power laser systems,” in IEEE International Photonics Conference (IPC) (2012), pp. 822–823.
  18. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  19. RSoft Design Group’s website for DiffractionMOD simulation tool, http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=DiffractMOD .
  20. N. Yamamoto and S. Noda, “Fabrication and optical properties of one period of a three-dimensional photonic crystal operating in the 5–10 μm wavelength region,” Jpn. J. Appl. Phys. 38, 1282–1285 (1999). [CrossRef]
  21. C. K. Wong, H. Wong, C. W. Kok, and M. Chan, “Silicon oxynitride prepared by chemical deposition as optical waveguide materials,” J. Cryst. Growth 288, 171–175 (2006). [CrossRef]
  22. T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetector in mid-infrared wavelength regime (3–5 μm),” IEEE J. Quantum Electron. 46, 1484–1491 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited