OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 28 — Oct. 1, 2013
  • pp: 6919–6930

Wide dynamic range homodyne interferometry method and its application for piezoactuator displacement measurements

José Henrique Galeti, Paula Lalucci Berton, Cláudio Kitano, Ricardo Tokio Higuti, Ronny Calixto Carbonari, and Emílio Carlos Nelli Silva  »View Author Affiliations


Applied Optics, Vol. 52, Issue 28, pp. 6919-6930 (2013)
http://dx.doi.org/10.1364/AO.52.006919


View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiactuated piezoelectric flextensional actuators (MAPFAs) is a fast-growing technology in development, with a wide range of applications in precision mechanics and nanotechnology. In turn, optical interferometry is an adequate technique to measure nano/micro-displacements and to characterize these MAPFAs. In this work, an efficient method for homodyne phase detection, based on a well-known Bessel functions recurrence relation, is developed, providing practical applications with a high dynamic range. Fading and electronic noise are taken into account in the analysis. An important advantage of the method is that, for each measurement, only a limited number of frequencies in the magnitude spectrum of the photodetected signal are used, without the need to know the phase spectrum. The dynamic range for phase demodulation is from 0.2 to 100πrad (or 10 nm to 16 μm for displacement, using 632.8 nm wavelength). The upper range can be easily expanded by adapting the electronic system to the signal characteristics. By using this interferometric technique, a new XY nanopositioner MAPFA prototype is tested in terms of linearity, displacement frequency response, and coupling rate.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 9, 2013
Revised Manuscript: September 3, 2013
Manuscript Accepted: September 3, 2013
Published: September 26, 2013

Citation
José Henrique Galeti, Paula Lalucci Berton, Cláudio Kitano, Ricardo Tokio Higuti, Ronny Calixto Carbonari, and Emílio Carlos Nelli Silva, "Wide dynamic range homodyne interferometry method and its application for piezoactuator displacement measurements," Appl. Opt. 52, 6919-6930 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-28-6919

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited