OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 28 — Oct. 1, 2013
  • pp: 7040–7048

Polarization holography for vortex retarders recording

Pierre Piron, Pascal Blain, Serge Habraken, and Dimitri Mawet  »View Author Affiliations


Applied Optics, Vol. 52, Issue 28, pp. 7040-7048 (2013)
http://dx.doi.org/10.1364/AO.52.007040


View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an original static recording method for vortex retarders (VRs) made from liquid crystal polymers (LCPs) using the superimposition of several polarized beams. VRs are birefringent plates characterized by a rotation of their fast axis about their center. The new method is based on polarization holography and photo-orientable LCP. Combining several polarized beams induces the polarization patterns required for the recording process of VRs without mechanical action. A mathematical description of the method, the outcomes of the numerical simulations, and the first experimental results are presented.

© 2013 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2880) Holography : Holographic interferometry
(160.3710) Materials : Liquid crystals
(260.5430) Physical optics : Polarization

ToC Category:
Holography

History
Original Manuscript: July 9, 2013
Revised Manuscript: September 8, 2013
Manuscript Accepted: September 10, 2013
Published: October 1, 2013

Citation
Pierre Piron, Pascal Blain, Serge Habraken, and Dimitri Mawet, "Polarization holography for vortex retarders recording," Appl. Opt. 52, 7040-7048 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-28-7040


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices,” Opt. Express 14, 4208–4220 (2006). [CrossRef]
  2. D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17, 1902–1918 (2009). [CrossRef]
  3. M. Berry, “The adiabatic phase and Pancharatnam phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987). [CrossRef]
  4. E. J. Galvez, “Applications of geometric phase in optics,” Recent Research Developments in Optics 2, 165–182 (2002).
  5. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Near-field Fourier transform polarimetry by use of a discrete space-variant subwavelength grating,” J. Opt. Soc. Am. A 20, 1940–1948 (2003). [CrossRef]
  6. P. Piron, P. Blain, and S. Habraken, “Polarization measurement with space-variant retarders in liquid crystal polymers,” Proc. SPIE 8160, 81600Q (2011).
  7. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal-polarization converters,” Opt. Lett. 21, 1948–1950 (1996). [CrossRef]
  8. S.-W. Ko, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Polarization converters based on axially symmetric twisted nematic liquid crystal,” Opt. Express 18, 3601–3607 (2010). [CrossRef]
  9. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of linearly polarized light with axial symmetry by use of space variant subwavelength gratings,” Opt. Lett. 28, 510–512 (2003). [CrossRef]
  10. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16, 4567–4581 (2008). [CrossRef]
  11. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  12. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  13. W. Chen, R. L. Nelson, D. C. Abesysinghe, and Q. Zhan, “Optimal plasmon focusing with spatial polarization engineering,” Opt. Photon. News 20, 36–41 (2009). [CrossRef]
  14. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004). [CrossRef]
  15. D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four-quadrant phase-mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112, 1479–1486 (2000). [CrossRef]
  16. D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005). [CrossRef]
  17. D. Mawet, P. Riaud, J. Surdej, and J. Baudrand, “Subwavelength surface-relief gratings for stellar coronagraphy,” Appl. Opt. 44, 7313–7321 (2005). [CrossRef]
  18. D. Mawet, E. Serabyn, K. Liewer, R. Buruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results, and first light at palomar observatory,” Astrophys. J. 709, 53–57 (2010). [CrossRef]
  19. S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21, 8205–8213 (2013). [CrossRef]
  20. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008). [CrossRef]
  21. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002). [CrossRef]
  22. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment technique,” J. Appl. Phys. 98, 123102 (2005). [CrossRef]
  23. H. Ren, T.-H. Lin, and S.-T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
  24. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. 18, 1–47 (2009). [CrossRef]
  25. P. Blain, P. Piron, Y. Renotte, and S. Habraken, “An in-line shearography set-up based on circular polarization gratings,” Opt. Lasers Eng. 51, 1053–1059 (2013). [CrossRef]
  26. S. R. Nersisyan, N. V. Nelson, V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photon. News 21, 40–45 (2010). [CrossRef]
  27. U. Ruiz, C. Provenzano, P. Pagliusi, and G. Cipparone, “Pure two-dimensional polarization patterns for holographic recording,” Opt. Lett. 37, 311–313 (2012). [CrossRef]
  28. B. Kilosanidze and G. Kakauridze, “Polarization-holographic gratings for analysis of light. 1. Analysis of completely polarized light,” Appl. Opt. 46, 1040–1049 (2007). [CrossRef]
  29. M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Intersciences, 1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited