OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 29 — Oct. 10, 2013
  • pp: 7054–7061

Two applications of solid phantoms in performance assessment of optical coherence tomography systems

Mohammad R. N. Avanaki, Adrian Gh. Podoleanu, Mark C. Price, Serena A. Corr, and S. A. Hojjatoleslami  »View Author Affiliations

Applied Optics, Vol. 52, Issue 29, pp. 7054-7061 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Virtual tissues (phantoms) are widely used for performance evaluation of imaging systems. Specific design of the phantom is necessary for the correct assessment of a system’s parameters. In an effort to reduce the amount of time and energy spent making application-oriented phantoms, we describe procedures to make epoxy-resin solid phantoms based on Mie scattering theory, with two different scatterers: polystyrene and gold microspheres. The phantoms are specifically designed to be used in two applications: (a) the gold microspheres solid phantoms are used to estimate the point-spread function (PSF) of an optical coherence tomography (OCT) system, and (b) the polystyrene solid phantom are used to evaluate the performance of an OCT-images optical properties extraction (OPE) algorithm. Phantoms with differing combination of materials have been tested to achieve the most suitable combination for producing an accurate PSF for application (a) and a valid evaluation/parameter optimization of the algorithm in application (b). An en face time-domain dynamic focus OCT is used for imaging.

© 2013 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(110.1650) Imaging systems : Coherence imaging

ToC Category:
Imaging Systems

Original Manuscript: August 14, 2013
Revised Manuscript: August 14, 2013
Manuscript Accepted: August 26, 2013
Published: October 2, 2013

Mohammad R. N. Avanaki, Adrian Gh. Podoleanu, Mark C. Price, Serena A. Corr, and S. A. Hojjatoleslami, "Two applications of solid phantoms in performance assessment of optical coherence tomography systems," Appl. Opt. 52, 7054-7061 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Firbank, “The design, calibration and usage of a solid scattering and absorbing phantom for near infrared spectroscopy,” Ph.D thesis (University of London, 1994).
  2. M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995). [CrossRef]
  3. Medical physics homepage: http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/phantoms.htm .
  4. S. Madsen, M. Patterson, and B. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992). [CrossRef]
  5. U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996). [CrossRef]
  6. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35, 2269–2271 (2010). [CrossRef]
  7. C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53, N237 (2008). [CrossRef]
  8. B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15, 030507 (2010). [CrossRef]
  9. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010). [CrossRef]
  10. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49, 2014–2021 (2010). [CrossRef]
  11. M. Connors, A. Agrawal, C.-P. Liang, Y. Chen, R. Drezek, and J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” in CLEO: Applications and Technology (Optical Society of America, 2011).
  12. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006). [CrossRef]
  13. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3, 1381–1398 (2012). [CrossRef]
  14. E. Hecht and A. Zajac, Optics, 4th ed. (Addison-Wesley, 2003).
  15. C. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” Research Supported by the University of Arizona and Institute of Occupational and Environmental Health (Wiley-Interscience, 1983), p. 541.
  16. J. Gordon, “Simple method for approximating Mie scattering,” J. Opt. Soc. Am. A 2, 156–159 (1985). [CrossRef]
  17. M. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjat, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013). [CrossRef]
  18. Schott, “TIE-29: refractive index and dispersion, technical information,” Schott AG, 2007.
  19. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003). [CrossRef]
  20. M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Phantoms for performance assessment of optical coherence tomography systems,” Proc. SPIE 8229, 82290W (2012). [CrossRef]
  21. Epoxy-resin provider, http://www.melford.co.uk .
  22. Agarose provider, http://www.melford.co.uk .
  23. G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997). [CrossRef]
  24. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics Extended (Wiley, 2010).
  25. K. W. Lee and J. P. Kim, “Effect of ultrasound on disperse dye particle size,” Text. Res. J. 71, 395–398 (2001). [CrossRef]
  26. M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” Proceedings of International Conference on Microscopy, Microscience (2010), p. 152.
  27. M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012). [CrossRef]
  28. M. R. N. Avanaki, A. Hojjat, and A. Gh. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009). [CrossRef]
  29. S. A. Hojjatoleslami, M. R. N. Avanaki, and A. Gh. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm,” Appl. Opt. 52, 5663–5670 (2013). [CrossRef]
  30. M. Hughes and A. Gh. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009). [CrossRef]
  31. P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” National Physical Labratorary (NLP) report (August2009).
  32. M. Avanaki, P. P. Laissue, T. J. Eom, A. Gh. Podoleanu, and A. Hojjatoleslami, “Speckle reduction using an artificial neural network algorithm,” Appl. Opt. 52, 5050–5057 (2013). [CrossRef]
  33. M. R. N. Avanaki, R. Cernat, P. J. Tadrous, T. Tatla, A. Gh. Podoleanu, and S. A. Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photon. Technol. Lett. 25, 1439–1442 (2013). [CrossRef]
  34. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000). [CrossRef]
  35. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Gatesmark, 2009), Vol. 2.
  36. M. R. N. Avanaki, A. Hojjatoleslami, and A. Gh. Podoleanu, “Multilayer tissue-like optical phantom; a model for skin in optical coherence tomography imaging,” International Labmate online journal, microscopy focus section (November 2010).
  37. F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24, 1369–1376 (2005). [CrossRef]
  38. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited