OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 29 — Oct. 10, 2013
  • pp: 7117–7126

Measuring rough optical surfaces using scanning long-wave optical test system. 1. Principle and implementation

Tianquan Su, Shanshan Wang, Robert E. Parks, Peng Su, and James H. Burge  »View Author Affiliations


Applied Optics, Vol. 52, Issue 29, pp. 7117-7126 (2013)
http://dx.doi.org/10.1364/AO.52.007117


View Full Text Article

Enhanced HTML    Acrobat PDF (1336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Current metrology tools have limitations when measuring rough aspherical surfaces with 1–2 μm root mean square roughness; thus, the surface cannot be shaped accurately by grinding. To improve the accuracy of grinding, the scanning long-wave optical test system (SLOTS) has been developed to measure rough aspherical surfaces quickly and accurately with high spatial resolution and low cost. It is a long-wave infrared deflectometry device consisting of a heated metal ribbon and an uncooled thermal imaging camera. A slope repeatability of 13.6 μrad and a root-mean-square surface accuracy of 31 nm have been achieved in the measurements of two 4 inch spherical surfaces. The shape of a rough surface ground with 44 μm grits was also measured, and the result matches that from a laser tracker measurement. With further calibration, SLOTS promises to provide robust guidance through the grinding of aspherics.

© 2013 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 26, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 9, 2013
Published: October 3, 2013

Citation
Tianquan Su, Shanshan Wang, Robert E. Parks, Peng Su, and James H. Burge, "Measuring rough optical surfaces using scanning long-wave optical test system. 1. Principle and implementation," Appl. Opt. 52, 7117-7126 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-29-7117

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited