OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 29 — Oct. 10, 2013
  • pp: 7145–7151

Multipass cell based on confocal mirrors for sensitive broadband laser spectroscopy in the near infrared

T. Mohamed, F. Zhu, S. Chen, J. Strohaber, A. A. Kolomenskii, A. A. Bengali, and H. A. Schuessler  »View Author Affiliations

Applied Optics, Vol. 52, Issue 29, pp. 7145-7151 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1095 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on broadband absorption spectroscopy in the near IR using a multipass cell design based on highly reflecting mirrors in a confocal arrangement having the particular aim of achieving long optical paths. We demonstrate a path length of 314 m in a cell consisting of two sets of highly reflecting mirrors with identical focal length, spaced 0.5 m apart. The multipass cell covers this path length in a relatively small volume of 1.25 l with the light beam sampling the whole volume. In a first application, the absorption spectra of the greenhouse gases CO2, CH4, and CO were measured. In these measurements we used a femtosecond fiber laser with a broadband spectral range spanning the near IR from 1.5 to 1.7 μm. The absorption spectra show a high signal-to-noise ratio, from which we derive a sensitivity limit of 6 ppmv for methane observed in a mixture with air.

© 2013 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6270) Spectroscopy : Spectroscopy, far infrared

ToC Category:

Original Manuscript: May 10, 2013
Revised Manuscript: July 18, 2013
Manuscript Accepted: September 12, 2013
Published: October 9, 2013

T. Mohamed, F. Zhu, S. Chen, J. Strohaber, A. A. Kolomenskii, A. A. Bengali, and H. A. Schuessler, "Multipass cell based on confocal mirrors for sensitive broadband laser spectroscopy in the near infrared," Appl. Opt. 52, 7145-7151 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Wang, N. Srivastava, B. A. Jones, and R. B. Reese, “A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope,” Appl. Phys. B 92, 259–270 (2008). [CrossRef]
  2. K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (Oxford University, 1999).
  3. G. Berden, R. Peeters, and G. Meijer, “Cavity-enhanced absorption spectroscopy of the 1.5 μm band system of jet-cooled ammonia,” Chem. Phys. Lett. 307, 131–138 (1999). [CrossRef]
  4. H. Dahnke, D. Kleine, W. Urban, P. Hering, and M. Murtz, “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971–975 (2001). [CrossRef]
  5. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001). [CrossRef]
  6. E. S. Fry, G. W. Kattawar, and R. M. Pope, “Design of an integrating cavity absorption meter,” Appl. Opt. 31, 2055–2065 (1992). [CrossRef]
  7. A. O’Keefe, J. J. Scherer, and J. B. Paul, “Cw integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999). [CrossRef]
  8. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942). [CrossRef]
  9. R. G. Pilston and J. U. White, “A long path gas absorption cell,” J. Opt. Soc. Am. 44, 572 (1954). [CrossRef]
  10. D. Herriot, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  11. S. M. Chernin and E. G. Barskaya, “Optical multipass matrix systems,” Appl. Opt. 30, 51–58 (1991). [CrossRef]
  12. C. Robert, “Simple, stable, and compact multiple-reflection optical cell for very long optical paths,” Appl. Opt. 46, 5408–5418 (2007). [CrossRef]
  13. J. B. McManus, P. L. Kebbabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995). [CrossRef]
  14. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy,” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  15. D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt 39, 4436–4443 (2000). [CrossRef]
  16. A. Silver and W. R. Wood, “Miniature gas sensor for monitoring biological space environments,” Proc. SPIE 4817, 82–87 (2002). [CrossRef]
  17. C. Guimbaud, V. Catoire, S. Gogo, C. Robert, M. Chartier, F. Laggoun-Défarge, A. Grossel, P. Albéric, L. Pomathiod, B. Nicoullaud, and G. Richard, “A portable infrared laser spectrometer for flux measurements of trace gases at the geosphere–atmosphere interface,” Meas. Sci. Technol. 22, 075601 (2011). [CrossRef]
  18. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, and J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860–4872 (1990). [CrossRef]
  19. P. Minutolo, C. Corsi, F. D’Amato, and M. De Rosa, “Self- and foreign-broadening and shift coefficients for C2H2 lines at 1.54 μm,” Eur. Phys. J. D 17, 175–179 (2001). [CrossRef]
  20. M. Gianella and M. W. Sigrist, “Infrared spectroscopy on smoke produced by cauterization of animal tissue,” Sensors 10, 2694–2708 (2010). [CrossRef]
  21. J. Zhang, Z. H. Lu, and L. J. Wang, “Precision measurement of the refractive index of carbon dioxide with a frequency comb,” Opt. Lett. 32, 3212–3214 (2007). [CrossRef]
  22. D. Qu and C. Gmachl, “Quasichaotic optical multipass cell,” Phys. Rev. A 78, 033824 (2008). [CrossRef]
  23. J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011). [CrossRef]
  24. R. F. Curl and F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. 98, 219–272 (2002).
  25. L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, Q.-S. Zhu, and Z. Hong, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–2085 (2002). [CrossRef]
  26. J. A. Silver, “Simple dense-pattern optical multipass cells,” Appl. Opt. 44, 6545–6556 (2005). [CrossRef]
  27. J. A. Silver, “Dense pattern optical multipass cell,” European patent1,621,867A1 (21July2005).
  28. V. L. Kasyutich and P. A. Martin, “Multipass optical cell based upon two cylindrical mirrors for tunable diode laser absorption spectroscopy,” Appl. Phys. B 88, 125–130 (2007). [CrossRef]
  29. D. Das and A. C. Wilson, “Very long optical path-length from a compact multi-pass cell,” Appl. Phys. B 103, 749–754 (2011). [CrossRef]
  30. J. F. Doussin, R. Dominique, and C. Patrick, “Multiple-pass cell for very-long-path infrared spectrometry,” Appl. Opt. 38, 4145–4150 (1999). [CrossRef]
  31. D. W. Steyert, J. M. Sirota, M. E. Mickelson, and D. C. Reuter, “Two new long-pass cells for infrared and visible spectroscopy,” Rev. Sci. Instrum. 72, 4337–4343 (2001). [CrossRef]
  32. X. Cui, C. Lengignon, W. Tao, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez, L. Croize, W. Chen, Y. Wang, W. Zhang, X. Gao, W. Liu, Y. Zhang, and F. Dong, “Photonic sensing of the atmosphere by absorption spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 113, 1300–1316 (2012). [CrossRef]
  33. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited