OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 29 — Oct. 10, 2013
  • pp: 7171–7177

Effect of including intraband phenomena in the semiconductor optical amplifier model for propagation of short pulses

Kamal Hussain and Prasanta Kumar Datta  »View Author Affiliations


Applied Optics, Vol. 52, Issue 29, pp. 7171-7177 (2013)
http://dx.doi.org/10.1364/AO.52.007171


View Full Text Article

Enhanced HTML    Acrobat PDF (682 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comparison has been done between the two cases when intraband effects are included and when they are excluded in the semiconductor optical amplifier model for propagating short pulses. The numerical investigation shows that the dependence of output pulse chirping and broadening on the amplifier gain, input pulse energy, and input pulsewidth becomes stronger on inclusion of intraband effects. To prove the experimental fact of pulsewidth dependency of the amplifier saturated gain for short pulses, it is compulsory to include intraband effects in the model. We prescribe here an expression for the saturation energy as a function of pulsewidth that correctly predicts the variation obtained numerically.

© 2013 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(320.7120) Ultrafast optics : Ultrafast phenomena
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Optoelectronics

History
Original Manuscript: August 20, 2013
Revised Manuscript: September 22, 2013
Manuscript Accepted: September 22, 2013
Published: October 9, 2013

Citation
Kamal Hussain and Prasanta Kumar Datta, "Effect of including intraband phenomena in the semiconductor optical amplifier model for propagation of short pulses," Appl. Opt. 52, 7171-7177 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-29-7171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992). [CrossRef]
  2. K. Hall, G. Lenz, A. Darwish, and E. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994). [CrossRef]
  3. J. Mørk, J. Mark, and C. P. Seltzer, “Carrier heating in InGaAsP laser amplifiers due to two-photon absorption,” Appl. Phys. Lett. 64, 2206–2208 (1994). [CrossRef]
  4. A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994). [CrossRef]
  5. N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. II. Theory,” Jpn. J. Appl. Phys. 27, 615–626 (1988). [CrossRef]
  6. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989). [CrossRef]
  7. T. Saitoh and T. Mukai, “Gain saturation characteristics of traveling-wave semiconductor laser amplifiers in short optical pulse amplification,” IEEE J. Quantum Electron. 26, 2086–2094 (1990). [CrossRef]
  8. A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997). [CrossRef]
  9. P. Runge, R. Elschner, and K. Petermann, “Chromatic dispersion in InGaAsP semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 644–649 (2010). [CrossRef]
  10. L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38, 54–60 (2002). [CrossRef]
  11. K. Hussain, S. K. Varshney, and P. K. Datta, “Intraband effects on ultrafast pulse propagation in semiconductor optical amplifier,” Pramana J. Phys. 75, 1011–1016 (2010). [CrossRef]
  12. A. Mecozzi and J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997). [CrossRef]
  13. P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999). [CrossRef]
  14. Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisentein, “Short pulse gain saturation in InGaAsP diode laser amplifiers,” IEEE Photon. Technol. Lett. 2, 711–713 (1990). [CrossRef]
  15. A. E. Siegman, Lasers (University Science, 1986).
  16. M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited