OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 29 — Oct. 10, 2013
  • pp: 7186–7193

Method of mitigation laser-damage growth on fused silica surface

Zhou Fang, Yuan’an Zhao, Shunli Chen, Wei Sun, and Jianda Shao  »View Author Affiliations

Applied Optics, Vol. 52, Issue 29, pp. 7186-7193 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A reliable method, combining femtosecond (fs) laser mitigation and chemical (HF) etching, has been developed to mitigate laser-damage growth sites on a fused silica surface. A rectangular mitigation site was fabricated by an fs laser with a raster scan procedure; HF etching was then used to remove the redeposition material. The results show that the mitigation site exhibits good physical qualities with a smooth bottom and edge. The damage test results show that the growth threshold of the mitigation sites increases. Furthermore, the structural characteristic of samples was measured by a photoluminescence (PL) spectrometer, and the light intensification caused by damage and mitigation sites was numerically modeled by the finite-difference time-domain (FDTD). It revealed that the removal of damaged material and structure optimization contribute to the increase of the damage growth threshold of the mitigation site.

© 2013 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3380) Lasers and laser optics : Laser materials
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 17, 2013
Revised Manuscript: September 17, 2013
Manuscript Accepted: September 20, 2013
Published: October 10, 2013

Zhou Fang, Yuan’an Zhao, Shunli Chen, Wei Sun, and Jianda Shao, "Method of mitigation laser-damage growth on fused silica surface," Appl. Opt. 52, 7186-7193 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18, 19966–19976 (2010). [CrossRef]
  2. M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008). [CrossRef]
  3. M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001). [CrossRef]
  4. I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010). [CrossRef]
  5. M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007). [CrossRef]
  6. I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005). [CrossRef]
  7. L. Gallais, P. Cormont, and J. L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17, 23488–23501 (2009). [CrossRef]
  8. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002). [CrossRef]
  9. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006). [CrossRef]
  10. P. Cormont, L. Gallais, L. Lamaignere, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express 18, 26068–26076 (2010). [CrossRef]
  11. S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009). [CrossRef]
  12. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49, 2606–2616 (2010). [CrossRef]
  13. A. M. T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl. 20, 169–184 (2008). [CrossRef]
  14. M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998). [CrossRef]
  15. B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A 95, 537–545 (2009). [CrossRef]
  16. X. Liu, D. Du, and G. Mourous, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997). [CrossRef]
  17. J. Wolfe, R. Qiu, C. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009). [CrossRef]
  18. J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011). [CrossRef]
  19. Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese). [CrossRef]
  20. G. H. Hu, K. Yi, X. F. Liu, Y. A. Zhao, and J. D. Shao, “Growth mechanism of laser-induced damage in fused silica,” Proc. SPIE 8190, 819020 (2011). [CrossRef]
  21. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011). [CrossRef]
  22. R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52, 4241–4243 (1981). [CrossRef]
  23. L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001). [CrossRef]
  24. S. Chengwei, Laser Radiation Effect (Books, National Defense Industry, 2002).
  25. Z. K. Yu, H. B. He, H. J. Qi, Z. Fang, and D. W. Li, “Characteristics of 355 nm laser damage in bulk materials,” Chin. Phys. Lett. 30, 067801 (2013). [CrossRef]
  26. H. Hosono, H. Kawazoe, and N. Matsunami, “Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation,” Phys. Rev. Lett. 80, 317–320 (1998). [CrossRef]
  27. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998). [CrossRef]
  28. M. A. Stevens-Kalceff, “Electron-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs,” Phys. Rev. Lett. 84, 3137–3140 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited