OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 29 — Oct. 10, 2013
  • pp: 7206–7213

Computational study of a label-free biosensor based on a photonic crystal nanocavity resonator

Saeed Olyaee and Samira Najafgholinezhad  »View Author Affiliations

Applied Optics, Vol. 52, Issue 29, pp. 7206-7213 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we demonstrate and theoretically investigate a compact two-dimensional (2D) photonic crystal biosensor implemented by a waveguide and cavity. Biomaterials such as DNA molecules and proteins trapped inside a hole cause resonant wavelength shifting at the output terminal. The quality factor and sensitivity were obtained at about 4000 and 1.63nm/fg, respectively. Also, we investigated this structure as a bulk refractive index sensor with a sensitivity of about 165.45nm/RIU (refractive index units). Then, we modified the structure as a multichannel biosensor. This biosensor has the capability of highly parallel operation because of special architecture that was obtained by lattice shifting of a single hole around the cavity. Each channel had a different resonant cavity wavelength and the filling of analyte in selected holes caused resonant wavelength shifting, independently. Plane wave expansion (PWE) and finite difference time domain (FDTD) methods were used to analyze and compute the sensor characteristics.

© 2013 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(160.1435) Materials : Biomaterials

ToC Category:
Remote Sensing and Sensors

Original Manuscript: July 12, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 25, 2013
Published: October 10, 2013

Saeed Olyaee and Samira Najafgholinezhad, "Computational study of a label-free biosensor based on a photonic crystal nanocavity resonator," Appl. Opt. 52, 7206-7213 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2007).
  2. J.-M. Lourtioz, “Photonic crystals and metamaterials,” C. R. Physique 9, 4–15 (2008). [CrossRef]
  3. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).
  4. S. Olyaee and F. Taghipour, “Ultra-flattened dispersion hexagonal photonic crystal fiber with low confinement loss and large effective area,” IET Optoelectron. 6, 82–87 (2012). [CrossRef]
  5. S. Olyaee and S. Najafgholinezhad, “A high quality factor and wide measurement range biosensor based on photonic crystal nanocavity resonator,” Sens. Lett. 11, 483–488 (2013). [CrossRef]
  6. Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42, 3509–3515 (2003). [CrossRef]
  7. J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B Chem. 128, 46–50 (2007). [CrossRef]
  8. R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34, 89–134 (2010). [CrossRef]
  9. C. Lee and J. Thillaigovindan, “Optical nanomechanical sensor using Si photonic crystals cantilever embedded with nanocavity resonator,” Appl. Opt. 48, 1797–1803 (2009). [CrossRef]
  10. S. Olyaee and A. A. Dehghani, “High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal,” Photon. Sens. 2, 92–96 (2012). [CrossRef]
  11. A. Säynätjoki, M. Mulot, K. Vynck, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator,” Photon. Nanostr. Fundam. Appl. 6, 42–46 (2008). [CrossRef]
  12. S. Olyaee and A. A. Dehghani, “Nano-pressure sensor using high quality photonic crystal cavity resonator,” in IEEE, IET 8th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP, 2012), pp. 18–20.
  13. S. Olyaee and A. A. Dehghani, “Ultrasensitive pressure sensor based on point defect resonant cavity in photonic crystal,” Sens. Lett. (in press).
  14. S. Olyaee, S. Najafgholinezhad, and H. Alipour Banaei, “Four-channel label-free photonic crystal biosensor using nanocavity resonators,” Photon. Sens. 3, 231–236 (2013). [CrossRef]
  15. A. Rostami, H. A. Banaei, F. Nazari, and A. Bahrami, “An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure,” Optik 122, 1481–1485 (2011). [CrossRef]
  16. P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46, 2351–2360 (2007). [CrossRef]
  17. E. Hallynck and P. Biensman, “Photonic crystal biosensor based on angular spectrum analysis,” Opt. Express 18, 18164–18170 (2010). [CrossRef]
  18. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131, 279–284 (2008). [CrossRef]
  19. J. Derbali, F. AbdelMalek, S. S. A. Obayya, H. Bouchriha, and R. Letizia, “Design of a compact photonic crystal sensor,” Opt. Quantum Electron. 42, 463–472 (2011). [CrossRef]
  20. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef]
  21. L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,” Apoptosis 12, 1061–1068 (2007). [CrossRef]
  22. F. Hsiao and Ch. Lee, “Computational study of photonic crystals nano-ring resonator for biochemical sensing,” IEEE Sens. J. 10, 1185–1191 (2010). [CrossRef]
  23. S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” Appl. Opt. 40, 570–582 (2001). [CrossRef]
  24. S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, “Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits,” Small 1, 64–69 (2005). [CrossRef]
  25. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009). [CrossRef]
  26. D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Lægsgaard, and A. Overgaard, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8, 1280–1286 (2008). [CrossRef]
  27. W. Xiang and Ch. Lee, “Nanophotonics sensor based on microcantilever for chemical analysis,” IEEE J. Sel. Top. Quantum Electron. 15, 1323–1326 (2009). [CrossRef]
  28. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530–4535 (2007). [CrossRef]
  29. F.-L. Hsiao and C. Lee, “Novel biosensor based on photonic crystal nano-ring resonator,” Procedia Chem. 1, 417–420 (2009). [CrossRef]
  30. T. Dar, J. Homola, B. M. Azizur Rahman, and M. Rajarajan, “Label-free slot-waveguide biosensor for the detection of DNA hybridization,” Appl. Opt. 51, 8195–8202 (2012). [CrossRef]
  31. S. Pal, E. Guillermain, R. Sriram, B. Miller, and P. M. Fauchet, “Microcavities in photonic crystal waveguides for biosensor applications,” Proc. SPIE 7553, 755304 (2010). [CrossRef]
  32. N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15, 3169–3176 (2007). [CrossRef]
  33. M. Yun, Y. Wan, J. Liang, F. Xia, M. Liu, and L. Ren, “Multi-channel biosensor based on photonic crystal waveguide and microcavities,” Optik 123, 1920–1922 (2012). [CrossRef]
  34. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]
  35. F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112 (2009). [CrossRef]
  36. D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011). [CrossRef]
  37. M. D. Bennett, J. S. Heslop-Harrison, J. B. Smith, and J. P. Ward, “DNA density in mitotic and meiotic metaphase chromosomes of plants and animals,” J. Cell Sci. 63, 173–179 (1983).
  38. E. Guillermain and P. M. Fauchet, “Multi-channel biodetection via resonant microcavities coupled to a photonic crystal waveguide,” Proc. SPIE 7167, 71670D (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited