OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 3 — Jan. 20, 2013
  • pp: 314–322

Lens wavefront compensation for 3D photomask effects in subwavelength optical lithography

Monica Kempsell Sears, Joost Bekaert, and Bruce W. Smith  »View Author Affiliations


Applied Optics, Vol. 52, Issue 3, pp. 314-322 (2013)
http://dx.doi.org/10.1364/AO.52.000314


View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As semiconductor optical lithography is pushed to smaller dimensions, resolution enhancement techniques have been required to maintain process yields. For some time, the customization of illumination coherence at the source plane has allowed for the control of diffraction order distribution across the projection lens pupil. Phase shifting at the photomask plane has allowed for some phase control as well. Geometries smaller than the imaging wavelength introduce complex wavefront effects that cannot be corrected at source or mask planes. Three-dimensional photomask topography effects can cause a loss of both focal depth and exposure latitude across geometry of varying density. Wavefront manipulation at the lens pupil plane becomes necessary to provide the degrees of freedom needed to correct for such effects. The focus of this research is the compensation of the wavefront phase error introduced by the topographical photomask structures of high resolution phase shift masking combined with off-axis illumination. The compensation is realized through phase manipulation of the lens pupil plane, specifically in the form of spherical aberration. Subwavelength resolution optimization and imaging is presented showing how phase pupil filtering can measurably improve the depth of focus for several photomask structures and types.

© 2013 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(220.1000) Optical design and fabrication : Aberration compensation
(110.4235) Imaging systems : Nanolithography

ToC Category:
Imaging Systems

History
Original Manuscript: August 10, 2012
Revised Manuscript: November 30, 2012
Manuscript Accepted: December 1, 2012
Published: January 11, 2013

Citation
Monica Kempsell Sears, Joost Bekaert, and Bruce W. Smith, "Lens wavefront compensation for 3D photomask effects in subwavelength optical lithography," Appl. Opt. 52, 314-322 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-3-314


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Englebart, “Microelectronics and the art of similitude,” in Solid-State Circuits Conference. Digest of Technical Papers. 1960 IEEE International (IEEE, 1960), Vol. III, pp. 76–77.
  2. G. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965). [CrossRef]
  3. B. W. Smith, “The saga of lambda: spectral influences throughout lithography generations,” Proc. SPIE 8325, 83250Z (2012). [CrossRef]
  4. K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14 nm node design and patterning,” Proc. SPIE 8327, 832703 (2012). [CrossRef]
  5. B. W. Smith, “Optics for photolithography,” in Microlithography: Science and Technology, B. W. Smith and K. Suzuki, eds., 2nd ed. (CRC, 2007), pp. 149–242.
  6. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1982), pp. 1828–1836.
  7. G. O. Reynolds, “A concept for a high resolution optical lithographic system for producing one-half micron linewidths,” Proc. SPIE 633, 228–238 (1986). [CrossRef]
  8. J. E. Gortych and D. M. Williamson, “Effects of higher order aberrations on the process window,” Proc. SPIE 1463, 368–381 (1991). [CrossRef]
  9. J. Tsujiuchi, “A density filter improving aberrant optical image,” J. Phys. Soc. Jpn. 12, 744 (1957). [CrossRef]
  10. B. W. Smith, “Multi-layered attenuated phase shift mask and a method for making the mask,” U.S. patent 5939227(17August1999).
  11. V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007). [CrossRef]
  12. H. Fukuda, T. Terasawa, and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991). [CrossRef]
  13. H. Fukuda and R. Yamanaka, “A new pupil filter for annular illumination in optical lithography,” Jpn. J. Appl. Phys. 31, 4126–4130 (1992). [CrossRef]
  14. R. M. von Buenau, H. Fukuda, and T. Terasawa, “Effects of radially nonsymmetric pupil filters and multiple-pupil exposure,” Proc. SPIE 2726, 375–385 (1996). [CrossRef]
  15. F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011). [CrossRef]
  16. T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” Proc. SPIE 8326, 83260I (2012). [CrossRef]
  17. P. Evanschitzky, F. Shao, T. Fuhner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” Proc. SPIE 7973, 797329 (2011). [CrossRef]
  18. J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010). [CrossRef]
  19. J. Finders and T. Hollink, “Mask 3D effects: impact on imaging and placement,” Proc. SPIE 7985, 79850I (2011). [CrossRef]
  20. B. W. Smith, L. V. Zavyalova, and A. Estroff, “Benefiting from polarization effects on high-NA imaging,” Proc. SPIE 5377, 68–79 (2004). [CrossRef]
  21. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  22. M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011). [CrossRef]
  23. K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002). [CrossRef]
  24. M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, and Y. Tonooka, “Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM,” Proc. SPIE 7379, 73791L (2009).
  25. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, 2005).
  26. S. Luke, “Essentials of metaheuristics,” http://cs.gmu.edu/~sean/book/metaheuristics/ .
  27. F. Glover and C. McMillan, “The general employee scheduling problem. An integration of MS and AI,” Comput. Oper. Res. 13, 563–573 (1986). [CrossRef]
  28. M. Kempsell Sears and B. Smith, “Modeling the effects of pupil manipulated spherical aberration in optical nanolithography,” J. Microlithogr. Microfabr. Microsyst., doc. ID 12102, (posted 29 November 2012, in press).
  29. T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010). [CrossRef]
  30. A. Chen, M. Dusa, J. van Schoot, T. Theeuwes, M. Janssen, K. van Ingen Schenau, and H. van der Laan, “Utilization of insitu metrology capability of ASML lithography scanner to improve overall process control,” in Proceedings of IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2006), pp. 356–359.
  31. S. Tarutani, S. Kamimura, K. Fujii, K. Katou, and Y. Enomoto, “High volume manufacturing capability of negative tone development process,” Proc. SPIE 7972, 79720N (2011). [CrossRef]
  32. JSR Corporation, “Electronic materials,” http://www.jsr.co.jp/jsr_e/pd/ec_index.shtml .
  33. Fujifilm, “OPD 262: developer without surfactant,” http://www.fujifilmusa.com/products/semiconductor_materials/photoresist-ancillaries/developers/index.html#overview .
  34. KLA-Tencor, “ProDATA advanced CD analysis software—lithography modeling,” http://www.kla-tencor.com/lithography-modeling/pro-data.html .
  35. A. K. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase-shifting masks,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1994), pp. 895–902.
  36. L. V. Look, B. Kasprowicz, A. Zibold, W. Degel, and G. Vandenberghe, “Image imbalance compensation in alternating phase-shift masks towards the 45 nm node through-pitch imaging,” Proc. SPIE 5992, 59921S (2005). [CrossRef]
  37. A. Erdmann, “Topography effects and wave aberrations in advanced PSM technology,” Proc. SPIE 4346, 345–355 (2001). [CrossRef]
  38. M. Kempsell Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited