OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 3 — Jan. 20, 2013
  • pp: 330–339

Analysis of the shape of a subwavelength focal spot for the linearly polarized light

Victor V. Kotlyar, Sergey S. Stafeev, Yikun Liu, Liam O’Faolain, and Alexey A. Kovalev  »View Author Affiliations


Applied Optics, Vol. 52, Issue 3, pp. 330-339 (2013)
http://dx.doi.org/10.1364/AO.52.000330


View Full Text Article

Enhanced HTML    Acrobat PDF (1244 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By decomposing a linearly polarized light field in terms of plane waves, the elliptic intensity distribution across the focal spot is shown to be determined by the E-vector’s longitudinal component. Considering that the Poynting vector’s projection onto the optical axis (power flux) is independent of the E-vector’s longitudinal component, the power flux cross section has a circular form. Using a near-field scanning optical microscope (NSOM) with a small-aperture metal tip, we show that a glass zone plate (ZP) having a focal length of one wavelength focuses a linearly polarized Gaussian beam into a weak ellipse with the Cartesian axis diameters FWHMx=(0.44±0.02)λ and FWHMy=(0.52±0.02)λ and the (depth of focus) DOF=(0.75±0.02)λ, where λ is the incident wavelength. The comparison of the experimental and simulation results suggests that NSOM with a hollow pyramidal aluminum-coated tip (with 70° apex and 100 nm diameter aperture) measures the transverse intensity, rather than the power flux or the total intensity. The conclusion that the small-aperture metal tip measures the transverse intensity can be inferred from the Bethe–Bouwkamp theory.

© 2013 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: August 31, 2012
Revised Manuscript: November 28, 2012
Manuscript Accepted: November 30, 2012
Published: January 11, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Victor V. Kotlyar, Sergey S. Stafeev, Yikun Liu, Liam O’Faolain, and Alexey A. Kovalev, "Analysis of the shape of a subwavelength focal spot for the linearly polarized light," Appl. Opt. 52, 330-339 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-3-330


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94, 151912 (2009). [CrossRef]
  2. K. R. Chen, W. H. Chu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, H. H. Hwung, and A. Y.-G. Fuh, “Beyond-limit light focusing in the intermediate zone,” Opt. Lett. 36, 4497–4499 (2011). [CrossRef]
  3. Y. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19, 9434–9444 (2011). [CrossRef]
  4. Y. Liu, H. Xu, F. Stief, N. Zhitenev, and M. Yu, “Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits,” Opt. Express 19, 20233–20243 (2011). [CrossRef]
  5. V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, “Tight focusing with a binary microaxicon,” Opt. Lett. 36, 3100–3102 (2011). [CrossRef]
  6. R. G. Mote, S. F. Yu, A. Kumar, W. Zhou, and X. F. Li, “Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination,” Appl. Phys. B 102, 95–100 (2011). [CrossRef]
  7. S. S. Stafeev, L. O’Faolain, M. I. Shanina, V. V. Kotlyar, and V. A. Soifer, “Subwavelength focusing with a Fresnel zone plate of 532 nm focal length,” Comput. Opt. 35, 460–461 (2011).
  8. J.-S. Ye, G.-A. Mei, X.-H. Zheng, and Y. Zhang, “Long-focal-depth cylindrical microlens with flat axial intensity distributions,” J. Mod. Opt. 59, 90–94 (2012). [CrossRef]
  9. K. Huang and Y. Li, “Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system,” Opt. Lett. 36, 3536–3538 (2011). [CrossRef]
  10. G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011). [CrossRef]
  11. X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0  Tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36, 2510–2512 (2011). [CrossRef]
  12. J. Lin, K. Yin, Y. Li, and J. Tan, “Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation,” Opt. Lett. 36, 1185–1187 (2011). [CrossRef]
  13. H. Lin, B. Jia, and M. Gu, “Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam,” Opt. Lett. 36, 2471–2473(2011). [CrossRef]
  14. V. V. Kotlyar and S. S. Stafeev, “Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon,” J. Opt. Soc. Am. B 27, 1991–1997(2010). [CrossRef]
  15. J. Martin, J. Proust, D. Gérard, J.-L. Bijeon, and J. Plain, “Plain intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37, 1274–1276 (2012). [CrossRef]
  16. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011). [CrossRef]
  17. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012). [CrossRef]
  18. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef]
  19. B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005). [CrossRef]
  20. B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821–6827 (2005). [CrossRef]
  21. Z. Lin, J. M. Steele, W. Srituravanch, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonics lens,” Nano Lett. 5, 1726–1729 (2005). [CrossRef]
  22. http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FullWAVE .
  23. L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006).
  24. K. A. Michalski, “Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen,” Prog. Electromagn. Res. 27, 253–272 (2011). [CrossRef]
  25. J. H. Wu, “Modeling of near-field optical diffraction from a subwavelength aperture in a thin conducting film,” Opt. Lett. 36, 3440–3442 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited