OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 3 — Jan. 20, 2013
  • pp: 340–349

Resonant absorption of a chemically sensitive layer based on waveguide gratings

Laurent Davoine, Vincent Paeder, Guillaume Basset, Marc Schnieper, and Hans Peter Herzig  »View Author Affiliations

Applied Optics, Vol. 52, Issue 3, pp. 340-349 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1307 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A colorimetric sensor providing a direct visual indication of chemical contamination was developed. The sensor is a combination of a chemically sensitive dye layer and a resonant waveguide grating. Enhancement of the light absorption by the photonic structure can be clearly seen. The detection is based on the color change of the reflected light after exposure to a gas or a liquid. Low-cost fabrication and compatibility with environments where electricity cannot be used make this device very attractive for applications in hospitals, industries, with explosives, and in traffic.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(310.2785) Thin films : Guided wave applications

ToC Category:
Integrated Optics

Original Manuscript: August 8, 2012
Revised Manuscript: November 5, 2012
Manuscript Accepted: December 3, 2012
Published: January 11, 2013

Laurent Davoine, Vincent Paeder, Guillaume Basset, Marc Schnieper, and Hans Peter Herzig, "Resonant absorption of a chemically sensitive layer based on waveguide gratings," Appl. Opt. 52, 340-349 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990). [CrossRef]
  2. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997). [CrossRef]
  3. M. T. Gale, K. Knop, and R. H. Morf, “Zero-order diffractive microstructures for security applications,” Proc. SPIE 1210, 83–89 (1990). [CrossRef]
  4. S. S. Wang and R. Magnusson, “Theory and applications of guided mode resonance filters,” Opt. Express 32, 2606–2613 (1993). [CrossRef]
  5. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004). [CrossRef]
  6. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002). [CrossRef]
  7. J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005). [CrossRef]
  8. J.-N. Yih, Y.-M. Chu, Y.-C. Mao, W.-H. Wang, F.-C. Chien, C.-Y. Lin, K.-L. Lee, P.-K. Wei, and S.-J. Chen, “Optical waveguide biosensors constructed with subwavelength gratings,” Appl. Opt. 45, 1938–1942 (2006). [CrossRef]
  9. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting Photonic Crystal Biosensor Performance,” IEEE Sens. J. 8, 274–280 (2008). [CrossRef]
  10. A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14, 588–595 (1997). [CrossRef]
  11. O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004). [CrossRef]
  12. A. Greenwell, S. Boonruang, and M. G. Moharam, “Effect of loss or gain on guided mode resonant devices,” in Integrated Photonics Research and Applications/Nanophotonics, OSA Technical Digest (Optical Society of America, 2006), paper NThA1.
  13. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for thin silicon solar cells,” Opt. Express 17, 14312–14321 (2009). [CrossRef]
  14. S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theor. Tech. MTT-23, 123–133 (1975). [CrossRef]
  15. L. Li, “Reformulation of the fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998). [CrossRef]
  16. D. Ashlock, Evolutionary Computation for Modeling and Optimization (Springer, 2006).
  17. S. S. Sarkisov, D. E. Diggs, G. Adamovsky, and M. J. Curley, “Single-arm double-mode double-order planar waveguide interferometric sensor,” Appl. Opt. 40, 349–359 (2001). [CrossRef]
  18. M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005). [CrossRef]
  19. M. T. Gale, “Replication technology for micro optics and optical microsystems,” Proc. SPIE 5177, 113–120 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited