OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 3 — Jan. 20, 2013
  • pp: 433–438

Narrowband reflective generation of higher-order optical vortices in Bragg spun optical fibers

Constantine N. Alexeyev  »View Author Affiliations


Applied Optics, Vol. 52, Issue 3, pp. 433-438 (2013)
http://dx.doi.org/10.1364/AO.52.000433


View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied theoretically reflecting and transmitting properties of Bragg multihelicoidal spun fibers, in which refractive index distribution features l helical branches and possesses an l-fold symmetry in the transverse cross section. It is shown that for a special choice of the profile function modulation, such fibers in certain spectral ranges have the property to change the topological charge of the incoming Gaussian beam in the reflected field by l units. This property could be used for narrowband generation of optical vortices (OVs) from Gaussian beams and for changing the topological charge of incoming OVs.

© 2013 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 15, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: November 28, 2012
Published: January 16, 2013

Citation
Constantine N. Alexeyev, "Narrowband reflective generation of higher-order optical vortices in Bragg spun optical fibers," Appl. Opt. 52, 433-438 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-3-433


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Vasnetsov and K. Staliunas, Optical Vortices Vol. 228 of Horizons of World Physics (Nova Science, 1999).
  2. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001). [CrossRef]
  3. A. Ya Bekshaev, S. V. Sviridova, A. Yu. Popov, and A. V. Tyurin, “Generation of optical vortex light beams by volume holograms with embedded phase singularity,” Opt. Commun. 285, 4005–4014 (2012). [CrossRef]
  4. B. Terhalle, A. Langner, B. Päivänranta, V. A. Guzenko, C. David, and Y. Ekinci, “Generation of extreme ultraviolet vortex beams using computer generated holograms,” Opt. Lett. 36, 4143–4145 (2011). [CrossRef]
  5. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Ween, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  6. Ya. V. Izdebskaya, V. G. Shvedov, and A. V. Volyar, “Focusing of wedge-generated higher-order optical vortices,” Opt. Lett. 30, 2530–2532 (2005). [CrossRef]
  7. T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, A. S. Desyatnikov, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848–10863 (2010). [CrossRef]
  8. T. Fadeyeva, A. Rubass, Y. Egorov, A. Volyar, and G. Swartzlander, “Quadrefringence of optical vortices in a uniaxial crystal,” J. Opt. Soc. Am. A 25, 1634–1641 (2008). [CrossRef]
  9. I. Skab, Y. Vasylkiv, and R. Vlokh, “Induction of optical vortex in the crystals subjected to bending stresses,” Appl. Opt. 51, 5797–5805 (2012). [CrossRef]
  10. I. Skab, Y. Vasylkiv, O. Krupych, V. Savaryn, and R. Vlokh, “Generation of doubly charged vortex beam by concentrated loading of glass disks along their diameter,” Appl. Opt. 51, 1631–1637 (2012). [CrossRef]
  11. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef]
  12. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011). [CrossRef]
  13. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012). [CrossRef]
  14. E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81, 053813 (2010). [CrossRef]
  15. L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Cryst. Liq. Cryst. 488, 148–162 (2008). [CrossRef]
  16. G. Campbell, B. Hage, B. Buchler, and P. K. Lam, “Generation of high-order optical vortices using directly machined spiral phase mirrors,” Appl. Opt. 51, 873–876 (2012). [CrossRef]
  17. D. P. Ghai, “Generation of optical vortices with an adaptive helical mirror,” Appl. Opt. 50, 1374–1381 (2011). [CrossRef]
  18. G. M. Philip and N. K. Viswanathan, “Generation of spirally polarized propagation-invariant beam using fiber microaxicon,” Opt. Lett. 36, 3906–3908 (2011). [CrossRef]
  19. V. V. G. K. Inavalli and N. K. Viswanathan, “Switchable vector vortex beam generation using an optical fiber,” Opt. Commun. 283, 861–864 (2010). [CrossRef]
  20. G. Milione, H. I. Sztul, D. A. Nolan, J. Kim, M. Etienne, J. McCarthy, J. Wang, and R. R. Alfano, “Cylindrical vector beam generation from a multi elliptical core optical fiber,” Proc. SPIE 7950, 79500K (2011). [CrossRef]
  21. T. D. McGloin, N. B. Simpson, and M. J. Padgett, “Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam,” Appl. Opt. 37, 469–472 (1998). [CrossRef]
  22. C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–604 (1991). [CrossRef]
  23. K. S. Lee and T. Erdogan, “Fiber mode conversion with tilted gratings in an optical fiber,” J. Opt. Soc. Am. A 18, 1176–1185 (2001). [CrossRef]
  24. C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Helical core optical fibers maintaining propagation of a solitary optical vortex,” Phys. Rev. A 78, 013813 (2008). [CrossRef]
  25. C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation of optical vortices in layered helical waveguides,” Phys. Rev. A 83, 063820 (2011). [CrossRef]
  26. C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period twisted elliptical fibers,” Appl. Opt. 51, C193–C197 (2012). [CrossRef]
  27. C. N. Alexeyev, “Generation of optical vortices in spun multihelicoidal optical fibers,” Appl. Opt. 51, 6125–6129 (2012). [CrossRef]
  28. C. N. Alexeyev, A. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Topological activity of layered chiral optical Bragg waveguides,” J. Opt. 13, 095701 (2011). [CrossRef]
  29. C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Topological activity in Bragg elliptical twisted fibers,” Appl. Opt. 51, C7–C12 (2012). [CrossRef]
  30. E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).
  31. M. D. Turner, G. E. Schröder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express 19, 10001–10008 (2011). [CrossRef]
  32. M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010). [CrossRef]
  33. C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Helical core optical fibers maintaining propagation of a solitary optical vortex,” Phys. Rev. A 78, 013813 (2008). [CrossRef]
  34. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibers maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006). [CrossRef]
  35. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Multi-helix chiral fiber filters of higher-order optical vortices,” J. Opt. A 9, 537–542 (2007). [CrossRef]
  36. C. N. Alexeyev, H. G. Galamaga, and A. V. Volyar, “Filter of optical vortices: highly twisted high-birefringence optical fibers,” Opt. Lett. 31, 8–10 (2006). [CrossRef]
  37. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1985).
  38. V. I. Kopp and A. Z. Genack, “Chiral fibres: adding twist,” Nat. Photonics 5, 470–472 (2011). [CrossRef]
  39. A. Z. Genack, V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, and D. A. Neugroschl, “Chiral fiber Bragg gratings,” Proc. SPIE 5508, 57–64 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited