OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 3 — Jan. 20, 2013
  • pp: 449–455

Ultrabroadband polarization splitter based on three-core photonic crystal fibers

Wenliang Lu, Shuqin Lou, Xin Wang, Liwen Wang, and Ruijuan Feng  »View Author Affiliations


Applied Optics, Vol. 52, Issue 3, pp. 449-455 (2013)
http://dx.doi.org/10.1364/AO.52.000449


View Full Text Article

Enhanced HTML    Acrobat PDF (770 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF) is proposed. Two fluorine-doped cores and an elliptical modulation core are introduced to achieve an excellent performance and an ultrawide bandwidth. Numerical results demonstrate that the polarization splitter based on three-core PCF has an extinction ratio as low as 20 dB bandwidth as great as 400 nm covering almost all communication bands ( O , E , S , C , and L bands). Its Gaussian-like mode-field distributions and suitable effective mode areas make it highly compatible with the standard single-mode fibers. Due to using a uniform size of circular air holes and only one elliptical central air hole, the difficulty of fabrication can be decreased to some extent.

© 2013 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 8, 2012
Revised Manuscript: December 15, 2012
Manuscript Accepted: December 17, 2012
Published: January 16, 2013

Citation
Wenliang Lu, Shuqin Lou, Xin Wang, Liwen Wang, and Ruijuan Feng, "Ultrabroadband polarization splitter based on three-core photonic crystal fibers," Appl. Opt. 52, 449-455 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-3-449


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990). [CrossRef]
  2. T. Birks, P. Roberts, P. S. J. Russell, D. Atkin, and T. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995). [CrossRef]
  3. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef]
  4. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998). [CrossRef]
  5. N. Broderick, T. Monro, P. Bennett, and D. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999). [CrossRef]
  6. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30, 2545–2547 (2005). [CrossRef]
  7. A. Cerqueira S., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14, 926–931 (2006). [CrossRef]
  8. L. Wang and D. Yang, “Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core,” Opt. Express 15, 8892–8897 (2007). [CrossRef]
  9. S. Lou, H. Fang, H. Li, T. Guo, L. Yao, L. Wang, W. Chen, and S. Jian, “Design of broadband nearly-zero flattened dispersion highly nonlinear photonic crystal fiber,” Chin. Opt. Lett. 6, 821–823 (2008). [CrossRef]
  10. L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020 (2003). [CrossRef]
  11. J. Lægsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29, 2473–2475 (2004). [CrossRef]
  12. L. Zhang and C. Yang, “Polarization-dependent coupling in twin-core photonic crystal fibers,” J. Lightwave Technol. 22, 1367–1373 (2004). [CrossRef]
  13. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12, 3940–3946 (2004). [CrossRef]
  14. N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13, 7365–7373 (2005). [CrossRef]
  15. M.-Y. Chen, B. Sun, Y.-K. Zhang, and X.-X. Fu, “Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber,” Appl. Opt. 49, 3042–3048 (2010). [CrossRef]
  16. J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011). [CrossRef]
  17. L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, “Polarization splitter based on a square-lattice photonic-crystal fiber,” Opt. Lett. 31, 441–443 (2006). [CrossRef]
  18. L. Zhang and C. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004). [CrossRef]
  19. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000). [CrossRef]
  20. M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. 85, 881–888 (2002).
  21. T. White, B. Kuhlmey, R. McPhedran, D. Maystre, G. Renversez, C. M. De Sterke, and L. Botten, “Multipole method for microstructured optical fibers. I—formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002). [CrossRef]
  22. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, “Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,” Opt. Express 10, 54–59 (2002). [CrossRef]
  23. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003). [CrossRef]
  24. M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991). [CrossRef]
  25. S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011). [CrossRef]
  26. N. A. Issa, M. A. Van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336–1338 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited