OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 3 — Jan. 20, 2013
  • pp: 480–488

Analysis of subwavelength bandpass plasmonic filters based on single and coupled slot nanocavities

Xiaoping Zhou and Linjie Zhou  »View Author Affiliations


Applied Optics, Vol. 52, Issue 3, pp. 480-488 (2013)
http://dx.doi.org/10.1364/AO.52.000480


View Full Text Article

Enhanced HTML    Acrobat PDF (1000 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Subwavelength surface plasmon polariton optical filters based on metal–insulator–metal slot nanocavites are proposed and analyzed by using coupled mode theory and a finite element method. Simulation results reveal that a single slot cavity coupled with two access waveguides possesses a bandpass-filtering characteristic with its performance affected by its geometric parameters. To further improve the filtering performance, we explore coupled slot cavities as high-order plasmonic filters. When the slot cavities are side-coupled, the bandpass filtering spectrum is dependent on the positions of the access waveguides. The two slot cavities can also be set orthogonal, leading to strong mutual coupling. With careful tuning of the relative length between the two cavities, improved filtering spectrum can be obtained. Given the subwavelength footprint of the proposed plasmonic filters, they can be used in an ultradense plasmonic integrated circuit for optical signal processing.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(230.4555) Optical devices : Coupled resonators
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 5, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 14, 2012
Published: January 17, 2013

Citation
Xiaoping Zhou and Linjie Zhou, "Analysis of subwavelength bandpass plasmonic filters based on single and coupled slot nanocavities," Appl. Opt. 52, 480-488 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-3-480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007). [CrossRef]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  5. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000). [CrossRef]
  6. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005). [CrossRef]
  7. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008). [CrossRef]
  8. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002). [CrossRef]
  9. J. Dionne, H. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006). [CrossRef]
  10. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  11. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009). [CrossRef]
  12. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  13. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17, 19033–19040 (2009). [CrossRef]
  14. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004). [CrossRef]
  15. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  16. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008). [CrossRef]
  17. Y. Gong, X. Liu, and L. Wang, “High-channel-count plasmonic filter with the metal–insulator–metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010). [CrossRef]
  18. Y. Liu and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010). [CrossRef]
  19. A. Hosseini and Y. Massoud, “A low-loss metal–insulator–metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323 (2006). [CrossRef]
  20. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009). [CrossRef]
  21. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010). [CrossRef]
  22. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17, 24096–24101 (2009). [CrossRef]
  23. I. Zand, A. Mahigir, T. Pakizeh, and M. S. Abrishamian, “Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators,” Opt. Express 20, 7516–7525 (2012). [CrossRef]
  24. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007). [CrossRef]
  25. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7555 (2009). [CrossRef]
  26. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18, 11111–11116 (2010). [CrossRef]
  27. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36, 1500–1502 (2011). [CrossRef]
  28. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994 (2009). [CrossRef]
  29. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef]
  30. S. R. Mirnaziry, A. Setayesh, and M. S. Abrishamian, “Design and analysis of plasmonic filters based on stubs,” J. Opt. Soc. Am. B 28, 1300–1307 (2011). [CrossRef]
  31. E. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539 (1969). [CrossRef]
  32. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Vol. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited