OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 3 — Jan. 20, 2013
  • pp: 495–504

Spectrometer and scanner with optofluidic configuration

Sergio Calixto, Martha Rosete-Aguilar, Maria Eugenia Sanchez-Morales, and Margarita Calixto-Solano  »View Author Affiliations


Applied Optics, Vol. 52, Issue 3, pp. 495-504 (2013)
http://dx.doi.org/10.1364/AO.52.000495


View Full Text Article

Acrobat PDF (1150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a spectrometer and scanner based on optofluidic configurations. The main optical component of the spectrometer is a compound optical element consisting of an optofluidic lens and standard blazed diffraction grating. The spectrum size can be changed by filling the lens cavity with different liquids. The scanner comprises two hollow 45° angle prisms oriented at 90° to each other. By changing the liquid inside the prisms, two-dimensional light beam scanning can be performed.

© 2013 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(160.4670) Materials : Optical materials
(160.5470) Materials : Polymers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 28, 2012
Revised Manuscript: November 6, 2012
Manuscript Accepted: November 7, 2012
Published: January 17, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Sergio Calixto, Martha Rosete-Aguilar, Maria Eugenia Sanchez-Morales, and Margarita Calixto-Solano, "Spectrometer and scanner with optofluidic configuration," Appl. Opt. 52, 495-504 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-3-495


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007). [CrossRef]
  3. N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics 4, 031501 (2010). [CrossRef]
  4. N. Chronis, G. L. Liu, K.-H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003). [CrossRef]
  5. H.-Y. Lin, Y.-H. Ho, J.-H Le, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficient improvement of small pixelated organic light emitting devices,” Opt. Express 16, 11044–11051 (2008). [CrossRef]
  6. O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic device,” Sens. Actuators 78, 149–159 (1999). [CrossRef]
  7. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33, 548–550 (2008). [CrossRef]
  8. C. Grillet, P. Domachuck, V. Ta’eed, E. Magi, J. Bolger, B. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440–5447 (2004). [CrossRef]
  9. H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid. 4, 1–24 (2008). [CrossRef]
  10. Z. Li and D. Psaltis, “Optofludic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2007). [CrossRef]
  11. H. Ren and S.-T. Wu, “Variable focus liquid lens,” Opt. Express 15, 5931–5936 (2007). [CrossRef]
  12. A. Werber and H. Zappe, “Tunable microfluidic microlens,” Appl. Opt. 44, 3238–3245 (2005). [CrossRef]
  13. S. Hu, H. Ren, Y.-J. Lin, M. G. J. Moharam, S.-T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photopolymer,” Opt. Express 17, 17590–17595 (2009). [CrossRef]
  14. S. Kuiper and B. H. W. Hendricks, “Variable focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004). [CrossRef]
  15. F. T. Sai, S. H. Cho, Y.-H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33, 291–293 (2008). [CrossRef]
  16. S. Calixto, M. Rosete-Aguilar, D. Monzon, and V. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47, 843–848 (2008). [CrossRef]
  17. S. Calixto, F. Sanchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47, 6580–6585 (2008). [CrossRef]
  18. S. Calixto, F. Sanchez-Marin, and M. E. Sanchez-Morales, “Pressure measurements through image analysis,” Opt. Express 17, 17996–18002 (2009). [CrossRef]
  19. X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006). [CrossRef]
  20. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psalis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008). [CrossRef]
  21. S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011). [CrossRef]
  22. P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11, 899–904 (2011). [CrossRef]
  23. D. Ozcelik, B. S. Phillips, J. W. Parks, P. Measor, D. Gulbransen, A. R. Hawkins, and H. Schmidt, “Dual core optofluidic chip for independent particle detection and tunable spectral filtering,” Lab Chip 12, 3728–3733 (2012). [CrossRef]
  24. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5, 234–238 (2011). [CrossRef]
  25. C. Song, N.-T. Nguyen, A. K. Asundi, and S.-H. Tan, “Biconcave micro-optofluidic lens with low-refractive-index liquids,” Opt. Lett. 35, 327–329 (2010). [CrossRef]
  26. S. Calixto, M. E. Sanchez-Morales, F. J. Sanchez-Marin, M. Rosete-Aguilar, A. Martinez-Richa, and K. A. Barrera-Rivera, “Optofluidic varible focus lenses,” Appl. Opt. 48, 2308–2311 (2009). [CrossRef]
  27. S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, M. Calixto-Solano, and C. López-Mariscal, “Refractive index measurements through image analysis with an optofluidic device,” Opt. Express 20, 2073–2080 (2012). [CrossRef]
  28. W. Zhang, K. Aljasen, H. Zappe, and A. Seifert, “Completely integrated, thermopneumatically tunable microlens,” Opt. Express 19, 2347–2362 (2011). [CrossRef]
  29. S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, O. L. Torres-Rocha, E. M. Martinez-Prado, and M. Calixto-Solano, “Optofluidic compound lenses made with ionic liquids,” in Applications of Ionic Liquids in Science and Technology, S. Handy, ed. (InTech, 2011), Chap. 23.
  30. D. A. Zauner, A. M. Jorgensen, T. A. Anhoj, and J. Hubner, “Concave reflective SU-8 photoresist gratings for flat field integrated spectrometer,” Appl. Opt. 45, 5877–5880 (2006). [CrossRef]
  31. E. G. Loewen and E. Popov, Diffration Gratings and Aplications (Marcel Dekker, 1997).
  32. Ocean optics miniature USB4000 fiber optic spectrometer, www.oceanoptics.com .
  33. CCD linear image sensor, part number TCD 121 dg., www.toshiba.com/taec/catalog .
  34. L. Beiser and R. B. Johnson, “Scanners,” in Handbook of OpticsM. Bass, ed. (McGraw-Hill, 1994), Vol. 2, Chap. 19.
  35. L. Beiser, Holographic Scanning (Wiley, 1988).
  36. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545–6555 (2000). [CrossRef]
  37. C. Song, N. T. Nguyen, A. K. Asundi, and S. H. Tan, “Tunable micro-optofluidic prisms based on liquid-core liquid-cladding configuration,” Opt. Lett. 35, 327–329 (2010). [CrossRef]
  38. J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998).
  39. J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).
  40. S.-B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008). [CrossRef]
  41. D. Dumas, M. Fendler, N. Baier, J. Primot, and E. le Coarer, “Curved focal plane detector array for wide field cameras,” Appl. Opt. 51, 5419–5424 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited