OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 30 — Oct. 20, 2013
  • pp: 7233–7242

Ultimate efficiency of spectral beam combining by volume Bragg gratings

Derrek R. Drachenberg, Oleksiy Andrusyak, George Venus, Vadim Smirnov, Julien Lumeau, and Leonid B. Glebov  »View Author Affiliations

Applied Optics, Vol. 52, Issue 30, pp. 7233-7242 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectral beam combining (SBC) by volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass is a powerful tool for laser applications that require higher radiance than a single laser unit can achieve. The beam-combining factor (BCF) is introduced as a tool to compare various beam-combining methods and experiments. It describes the change of radiance provided by a beam-combining system but is not affected by the initial beam quality of the combined lasers. A method of optimization of VBGs providing the maximum efficiency of SBC has been described for an arbitrary number of beams. An experiment confirming the proposed modeling for a two-beam SBC system by a single VBG has demonstrated a total combined power of 301 W with a channel separation of 0.25 nm, combining efficiency of 97%, close to diffraction limited divergence with M2=1.18, BCF of 0.77, and spectral radiance of 770TW/(sr·m2·nm), the highest to date for SBC.

© 2013 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(140.3510) Lasers and laser optics : Lasers, fiber
(160.2750) Materials : Glass and other amorphous materials
(230.1480) Optical devices : Bragg reflectors
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 16, 2013
Revised Manuscript: September 11, 2013
Manuscript Accepted: September 14, 2013
Published: October 14, 2013

Derrek R. Drachenberg, Oleksiy Andrusyak, George Venus, Vadim Smirnov, Julien Lumeau, and Leonid B. Glebov, "Ultimate efficiency of spectral beam combining by volume Bragg gratings," Appl. Opt. 52, 7233-7242 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Drachenberg, M. J. Messerly, P. H. Pax, A. K. Sridharan, J. Tassano, and J. W. Dawson, “First selective mode excitation and amplification in a ribbon core optical fiber,” Opt. Express 21, 11257–11269 (2013). [CrossRef]
  2. D. R. Drachenberg, M. J. Messerly, P. H. Pax, A. K. Sridharan, J. Tassano, and J. W. Dawson, “First multiwatt ribbon fiber oscillator in a high order mode,” Opt. Express 21, 18089–18096 (2013). [CrossRef]
  3. A. Sridharan, P. H. Pax, J. E. Heebner, D. R. Drachenberg, P. J. Armstrong, and J. W. Dawson, “Mode-converters for rectangular-core fiber amplifiers to achieve diffraction-limited power scaling,” Opt. Express 20, 28792–28800 (2012). [CrossRef]
  4. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006). [CrossRef]
  5. N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving Gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt. 46, 5147–5157 (2007). [CrossRef]
  6. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Select. Top. Quantum Electron. 11, 567–577 (2005).
  7. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36, 3118–3120 (2011). [CrossRef]
  8. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers (invited),” J. Opt. Soc. Am. B 24, 1707–1715 (2007). [CrossRef]
  9. S. Sugimoto and K. Minemura, “High-speed digital-signal transmission experiments by optical wavelength-division multiplexing,” Electron. Lett. 13, 680–682 (1977). [CrossRef]
  10. O. Schmidt, C. Wirth, D. Nodop, J. Limpert, T. Schreiber, T. Peschel, R. Eberhardt, and A. Tünnermann, “Spectral beam combination of fiber amplified ns-pulses by means of interference filters,” Opt. Express 17, 22974–22982 (2009). [CrossRef]
  11. X. Chu, S. Zhao, L. Shi, S. Zhan, J. Xu, and Z. Wu, “Expansion of the channel number in spectral beam combining of fiber lasers array based on cascaded gratings,” Opt. Commun. 281, 4099–4102 (2008). [CrossRef]
  12. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, “Efficient power scaling of laser radiation by spectral beam combining,” Opt. Lett. 33, 384–386 (2008). [CrossRef]
  13. O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009). [CrossRef]
  14. Z. Sheng-bao, Z. Shang-hong, C. Xing-chun, W. Zhuo-liang, and S. Lei, “Spectral beam combining of fiber lasers based on a transmitting volume Bragg grating,” Opt. Laser Technol. 42, 308–312 (2010). [CrossRef]
  15. T. Y. Fan and A. Sanchez, “Coherent (phased array) and wavelength (spectral) beam combining compared (invited paper),”Proc. SPIE  5709, 157–164 (2005).
  16. L. Glebov, “Volume diffractive elements in photosensitive inorganic glass for beam combining,” in Proceedings of Solid State and Diode Lasers Technical Review (2001), p. FA-5.
  17. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  18. L. B. Glebov, J. Lumeau, S. Mokhov, V. Smirnov, and B. Y. Zeldovich, “Reflection of light by composite volume holograms: Fresnel corrections and Fabry-Perot spectral filtering,” J. Opt. Soc. Am. A 25, 751–764 (2008). [CrossRef]
  19. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45, 015802 (2006). [CrossRef]
  20. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999). [CrossRef]
  21. M. McCall, “Axial electromagnetic wave propagation in inhomogeneous dielectrics,” Mathemat. Comp. Model. 34, 1483–1497 (2001). [CrossRef]
  22. I. V. Ciapurin, D. R. Drachenberg, V. I. Smirnov, G. B. Venus, and L. B. Glebov, “Modeling of phase volume diffractive gratings, part 2: reflecting sinusoidal uniform gratings, Bragg mirrors,” Opt. Eng. 51, 058001 (2012). [CrossRef]
  23. L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J. Holography Speckle 5, 77–84 (2009). [CrossRef]
  24. L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” in Encyclopedia of Smart Materials (Wiley, 2002).
  25. T. Cardinal, O. M. Efimov, H. G. Francois-Saint-Cyr, L. B. Glebov, L. N. Glebova, and V. I. Smirnov, “Comparative study of photo-induced variations of x-ray diffraction and refractive index in photo-thermo-refractive glass,” J. Non-Cryst. Solids 325, 275–281 (2003). [CrossRef]
  26. A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, M. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), p. MQ1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited