OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 30 — Oct. 20, 2013
  • pp: 7243–7255

Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window

Masahiro Hori, Teruo Aoki, Tomonori Tanikawa, Akihiro Hachikubo, Konosuke Sugiura, Katsuyuki Kuchiki, and Masashi Niwano  »View Author Affiliations

Applied Optics, Vol. 52, Issue 30, pp. 7243-7255 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2389 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A model of angular-dependent emissivity spectra of snow and ice in the 8–14 μm atmospheric window is constructed. Past field research revealed that snow emissivity varies depending on snow grain size and the exitance angle. Thermography images acquired in this study further revealed that not only welded snow particles such as sun crust, but also disaggregated particles such as granular snow and dendrite crystals exhibit high reflectivity on their crystal facets, even when the bulk snow surface exhibits blackbody-like behavior as a whole. The observed thermal emissive behaviors of snow particles suggest that emissivity of the bulk snow surface can be expressed by a weighted sum of two emissivity components: those of the specular and blackbody surfaces. Based on this assumption, a semi-empirical emissivity model was constructed; it is expressed by a linear combination of specular and blackbody surfaces’ emissivities with a weighting parameter characterizing the specularity of the bulk surface. Emissivity spectra calculated using the model succeeded in reproducing the past in situ measured directional spectra of various snow types by employing a specific weighting parameter for each snow type.

© 2013 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering
(290.6815) Scattering : Thermal emission
(280.6780) Remote sensing and sensors : Temperature

ToC Category:

Original Manuscript: May 20, 2013
Revised Manuscript: August 7, 2013
Manuscript Accepted: September 16, 2013
Published: October 15, 2013

Masahiro Hori, Teruo Aoki, Tomonori Tanikawa, Akihiro Hachikubo, Konosuke Sugiura, Katsuyuki Kuchiki, and Masashi Niwano, "Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window," Appl. Opt. 52, 7243-7255 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Key and M. Haefliger, “Arctic ice surface temperature retrieval from AVHRR thermal channels,” J. Geophys. Res. 97, 5885–5893 (1992). [CrossRef]
  2. Z. Wan, “MODIS land-surface temperature algorithm theoretical basis document (LST ATBD),” Version 3.3. Contract Number  (1999), available at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf .
  3. S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67–89 (1982). [CrossRef]
  4. D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, “Comparison of satellite-derived and in situ observations of ice and snow surface temperatures over Greenland,” Remote Sens. Environ. 112, 3739–3749 (2008). [CrossRef]
  5. Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013). [CrossRef]
  6. T. Yamanouchi, K. Suzuki, and S. Kawaguchi, “Detection of clouds in Antarctica from infrared multispectral data of AVHRR,” J. Meteorol. Soc. Jpn. 65, 949–962 (1987).
  7. Y. Liu, J. R. Key, R. A. Frey, S. A. Ackerman, and W. P. Menzel, “Nighttime polar cloud detection with MODIS,” Remote Sens. Environ. 92, 181–194 (2004). [CrossRef]
  8. A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrievals of long-wave radiation,” NASA Tech. Rep., 35 (1999).
  9. R. Morishima, S. G. Edgington, and L. Spilker, “Regolith grain sizes of Saturn’s rings inferred from Cassini–CIRS far-infrared spectra,” Icarus 221, 888–899 (2012). [CrossRef]
  10. R. H. Berger, “Snowpack optical properties in the infrared,” (U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 1979), pp. 11.
  11. J. Dozier and S. Warren, “Effect of viewing angle on the infrared brightness temperature of snow,” Water Resour. Res. 18, 1424–1434 (1982). [CrossRef]
  12. J. R. Key, J. B. Collins, C. Fowler, and R. S. Stone, “High-latitude surface temperature estimates from thermal satellite data,” Remote Sens. Environ. 61, 302–309 (1997). [CrossRef]
  13. W.-C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998). [CrossRef]
  14. W. G. Rees and S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992). [CrossRef]
  15. W. G. Rees, “Infrared emissivities of Arctic land cover types,” Int. J. Remote Sens. 14, 1013–1017 (1993). [CrossRef]
  16. W. G. Rees, “Infrared emissivity of Arctic winter snow,” Int. J. Remote Sens. 14, 3069–3073 (1993). [CrossRef]
  17. J. W. Salisbury, D. M. D’Aria, and A. Wald, “Measurements of thermal infrared spectral reflectance of frost, snow, and ice,” J. Geophys. Res. 99, 24235–24240 (1994). [CrossRef]
  18. ASTER Spectral Library: reproduced from the ASTER Spectral Library through the courtesy of the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (1999), http://speclib.jpl.nasa.gov.
  19. A. Wald, “Modeling thermal infrared (2–14 μm) reflectance spectra of frost and snow,” J. Geophys. Res. 99, 24241–24250 (1994). [CrossRef]
  20. M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006). [CrossRef]
  21. H. Tonooka and A. Watanabe, “Applicability of thermal infrared surface emissivity ratio for snow/ice monitoring,” Proc. SPIE 5655, 282–290 (2005). [CrossRef]
  22. J. Cheng, S. Liang, F. Weng, J. Wang, and X. Li, “Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 3, 323–336 (2010). [CrossRef]
  23. C. Shea and B. Jamieson, “Some fundamentals of handheld snow surface thermography,” The Cryosphere 5, 55–66 (2011). [CrossRef]
  24. J. Light, S. Parthasarathy, and W. Mclver, “Monitoring winter ice conditions using thermal imaging cameras equipped with infrared microbolometer sensors,” Procedia Comput. Sci. 10, 1158–1165 (2012). [CrossRef]
  25. JAXA in situ data archive for GCOM mission: reproduced from the archived in-situ data provided by Japan Aerospace Exploration Agency. http://suzaku.eorc.jaxa.jp/GCOM_C/insitu/index.html (2012).
  26. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University, 1993).
  27. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef]
  28. T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000). [CrossRef]
  29. C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).
  30. Japanese Society of Snow and Ice, “JSSI classification for snow cover,” J. Jpn. Soc. Snow Ice 60, 419–436 (1998).
  31. A. R. Korb, P. Dybwad, W. Wadsworth, and J. W. Salisbury, “Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Appl. Opt. 35, 1679–1692 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited