OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 30 — Oct. 20, 2013
  • pp: 7302–7310

Stable and tunable single frequency Nd:GSAG laser around 943 nm

Xin Wang, Hans Joachim Eichler, Zhifeng Lin, Chunqing Gao, and Suhui Yang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 30, pp. 7302-7310 (2013)
http://dx.doi.org/10.1364/AO.52.007302


View Full Text Article

Enhanced HTML    Acrobat PDF (1419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stable single frequency output around 943 nm was obtained from a quasi-continuous wave (qcw) diode-pumped, Q-switched Nd:GSAG laser. The Q-switched Nd:GSAG laser was injection seeded with a single mode laser diode. Its frequency was stabilized by an active-control loop specially designed for a strong qcw pump. The spectral linewidth of the Nd:GASG laser was 41 MHz and the frequency stability was 10 MHz. The single-frequency-pulsed laser generated 32 mJ pulse energy at 10 Hz repetition rate. When the repetition rate was increased to 100 Hz, 5.6 mJ pulse energy was obtained by a thermal dynamic stable resonator. By tuning the seed laser, the wavelength of the pulsed Nd:GASG laser can be continuously varied from 942.1 to 943.1 nm.

© 2013 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3570) Lasers and laser optics : Lasers, single-mode
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 16, 2013
Revised Manuscript: September 7, 2013
Manuscript Accepted: September 9, 2013
Published: October 16, 2013

Citation
Xin Wang, Hans Joachim Eichler, Zhifeng Lin, Chunqing Gao, and Suhui Yang, "Stable and tunable single frequency Nd:GSAG laser around 943 nm," Appl. Opt. 52, 7302-7310 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-30-7302


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998). [CrossRef]
  2. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998). [CrossRef]
  3. P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.
  4. G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998). [CrossRef]
  5. Z. Chu, T. D. Wilkerson, and U. N. Singh, “Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser,” Appl. Opt. 32, 992–998 (1993). [CrossRef]
  6. F. Kallmeyer, A. Hermerschmidt, H. J. Eichler, and H. H. Klingenberg, “Injection seeding of a high energy Ti:sapphire laser for water vapor detection around 935 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper WB20.
  7. J. Löhring, K. Nicklaus, N. Kujath, and D. Hoffmann, “Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007). [CrossRef]
  8. K. He, Z. Wei, D. Li, Z. Zhang, H. Zhang, J. Wang, and C. Gao, “Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers,” Opt. Express 17, 19292–19297 (2009). [CrossRef]
  9. S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935  nm,” Opt. Commun. 275, 170–172 (2007).
  10. F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943 nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009). [CrossRef]
  11. F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007). [CrossRef]
  12. J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935  nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 71931Y (2009). [CrossRef]
  13. I. Freitag, R. Henking, A. Tünnermann, and H. Welling, “Quasi-three-level room-temperature Nd:YAG ring laser with high single-frequency output power at 946  nm,” Opt. Lett. 20, 2499–2501 (1995). [CrossRef]
  14. M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946  nm,” Opt. Commun. 194, 207–211 (2001). [CrossRef]
  15. G. Hollemann, E. Peik, A. Rusch, and H. Walther, “Injection locking of a diode-pumped Nd:YAG laser at 946  nm,” Opt. Lett. 20, 1871–1873 (1995). [CrossRef]
  16. J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011). [CrossRef]
  17. A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935  nm,” Appl. Phys. B 102, 905–915 (2011). [CrossRef]
  18. C. Xu, Z. Wei, Y. Zhang, D. Li, Z. Zhang, X. Wang, S. Wang, H. J. Eichler, C. Zhang, and C. Gao, “Diode-pumped passively mode-locked Nd:GSAG laser at 942  nm,” Opt. Lett. 34, 2324–2326 (2009). [CrossRef]
  19. Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942  nm,” Opt. Express 18, 6131–6136 (2010). [CrossRef]
  20. R. L. Schmitt and L. A. Rahn, “Diode-laser-pumped Nd:YAG laser injection seeding system,” Appl. Opt. 25, 629–633 (1986). [CrossRef]
  21. Z. Liu, S. Wu, and B. Liu, “Seed injection and frequency-locked Nd:YAG laser for direct detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007). [CrossRef]
  22. S. W. Henderson, E. H. Yuen, and E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986). [CrossRef]
  23. M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (1997), pp. 362–363.
  24. T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046–3050 (2001). [CrossRef]
  25. J. Zhou, H. Zang, T. Yu, J. Liu, and W. Chen, “Development of single-frequency laser for direct-detection wind lidar,” Proc. SPIE 6681, 66810R (2007). [CrossRef]
  26. F. Kallmeyer, “Wavelength controlled solid state lasers with high output pulse energy,” Ph.D. dissertation (Der Fakultät II Mathematik und Naturwissenschaften, der TU Berlin, 2008).
  27. T. Schröder, C. Lemmerz, O. Reitebuch, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007). [CrossRef]
  28. HITRAN Database, http://cfa-www.harvard.edu/HITRAN .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited