OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 30 — Oct. 20, 2013
  • pp: 7336–7341

Supercontinuum generation in dispersion-managed tapered-rib waveguide

Hongyu Hu, Wenbo Li, and Niloy K. Dutta  »View Author Affiliations

Applied Optics, Vol. 52, Issue 30, pp. 7336-7341 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (576 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed a tapered-rib waveguide and numerically studied the generation of supercontinuum using such waveguides. The Air-SF57 glassSiO2 waveguide is 3 cm long, with a varying etched depth to manage the total dispersion. Numerical simulations are conducted for input pulses at a wavelength of 1.55 μm with a width of 150 fs and peak power of 5 kW. The proposed waveguide geometry greatly broadens the output spectrum, extending from 1 to 6μm, caused by the continuous modification of the phase-matching condition for the generated waves.

© 2013 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.7390) Optical devices : Waveguides, planar
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Optical Devices

Original Manuscript: June 19, 2013
Revised Manuscript: September 25, 2013
Manuscript Accepted: September 25, 2013
Published: October 16, 2013

Hongyu Hu, Wenbo Li, and Niloy K. Dutta, "Supercontinuum generation in dispersion-managed tapered-rib waveguide," Appl. Opt. 52, 7336-7341 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  2. J. M. Dudley and J. R. Talor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  3. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002). [CrossRef]
  4. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. S. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002). [CrossRef]
  5. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003). [CrossRef]
  6. J. Y. Leong, P. Petropoulos, J. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006). [CrossRef]
  7. Z. Chen, S. Ma, and N. K. Dutta, “An efficient method for supercontinuum generation in dispersion-tailored lead-silicate fiber taper,” Opt. Commun. 283, 3076–3080 (2010). [CrossRef]
  8. J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012). [CrossRef]
  9. D. I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008). [CrossRef]
  10. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010). [CrossRef]
  11. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011). [CrossRef]
  12. R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012). [CrossRef]
  13. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20, 24218–24225 (2012). [CrossRef]
  14. A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003). [CrossRef]
  15. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004). [CrossRef]
  16. Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009). [CrossRef]
  17. O. Fedotova, A. Husakou, and J. Herrmann, “Supercontinuum generation in planar rib waveguides enabled by anomalous dispersion,” Opt. Express 14, 1512–1517 (2006). [CrossRef]
  18. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007). [CrossRef]
  19. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008). [CrossRef]
  20. V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006). [CrossRef]
  21. S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987). [CrossRef]
  22. E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).
  23. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568–3573 (2003). [CrossRef]
  24. S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fiber drawing,” J. Jpn. Inst. Met. Mater. 62, 106–110 (1998).
  25. Schott Glass Catalogue, 2003.
  26. T. E. Murphy, Software available at http://www.photonics.umd.edu .
  27. J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006). [CrossRef]
  28. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007). [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  30. L. Morl, C. M. Weinert, F. Reier, L. Stoll, and H. P. Nolting, “Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling,” Electron. Lett. 32, 36–38 (1996). [CrossRef]
  31. M. J. Zwanenburg, J. H. H. Bongaerts, J. F. Peters, D. Riese, and J. F. Van der Veen, “Focusing of coherent x-rays in a tapered planar waveguide,” Physica B 283, 285–288 (2000). [CrossRef]
  32. W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited