OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 30 — Oct. 20, 2013
  • pp: 7367–7375

Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies

Elif Degirmenci and Pascal Landais  »View Author Affiliations

Applied Optics, Vol. 52, Issue 30, pp. 7367-7375 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

© 2013 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(040.2235) Detectors : Far infrared or terahertz
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: May 23, 2013
Revised Manuscript: August 18, 2013
Manuscript Accepted: September 25, 2013
Published: October 18, 2013

Elif Degirmenci and Pascal Landais, "Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies," Appl. Opt. 52, 7367-7375 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002). [CrossRef]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  3. R. E. Miles, P. Harrison, and D. Lippens, Terahertz Sources and Systems (Springer, 2001).
  4. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  5. C. Lin, C. Chen, G. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. Prather, “Wavelength scale terahertz two-dimensional photonic crystal waveguides,” Opt. Express 12, 5723–5728 (2004). [CrossRef]
  6. Z. Li, Y. Zhang, and B. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14, 3887–3892 (2006). [CrossRef]
  7. H. Nemec, P. Kuzel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005). [CrossRef]
  8. T.-B. Yu, M.-H. Wang, X.-Q. Jiang, Q.-H. Liao, and J.-Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A 9, 37–42 (2007). [CrossRef]
  9. E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett. 67, 2138–2140 (1995). [CrossRef]
  10. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996). [CrossRef]
  11. Z.-Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38–42 (2003). [CrossRef]
  12. A. R. McGurn and A. A. Maradudin, “Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays,” Phys. Rev. B 48, 17576–17579 (1993). [CrossRef]
  13. D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two‐dimensional metal photonic band‐gap cavity,” Appl. Phys. Lett., 65, 645–647, (1994). [CrossRef]
  14. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995). [CrossRef]
  15. E. Ozbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996). [CrossRef]
  16. F. Gadot, A. Lustrac, J. M. De Lourtioz, T. Brillat, A. Ammouche, and E. Akmansoy, “High-transmission defect modes in two-dimensional metallic photonic crystals,” J. Appl. Phys. 85, 8499–8501 (1999). [CrossRef]
  17. M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. M. Soukoulis, “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals,” Phys. Rev. B 64, 195113 (2001). [CrossRef]
  18. C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li, and Z. Q. Zhang, “Two dimensional metallic photonic crystal in the THz range,” Opt. Commun. 166, 9–13 (1999). [CrossRef]
  19. S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93, 9401–9403 (2003). [CrossRef]
  20. N. Katsarakis, M. Bender, L. Singleton, G. Kiriakidis, and C. M. Soukoulis, “Two-dimensional metallic photonic band-gap crystals fabricated by LIGA,” Microsyst. Technol. 8, 74–77 (2002).
  21. Y. Zhao and D. R. Grischkowsky, “2-D terahertz metallic photonic crystals in parallel-plate waveguides,” IEEE Trans. Microw. Theory Tech. 55, 656–663 (2007). [CrossRef]
  22. A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wirel. Compon. Lett. 18, 428–430 (2008). [CrossRef]
  23. E. Degirmenci, F. Surre, S. Philippe, R. Maldonado-Basilio, and P. Landais, “Improved bend waveguide design for terahertz transmission,” IEEE Trans. Terahertz Sci. Technol. 2, 137–143 (2012). [CrossRef]
  24. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835 (1994). [CrossRef]
  25. S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86, 043104 (2005). [CrossRef]
  26. A. Nicorovici, R. C. McPhedran, and L. C. Botten, “Photonic band gaps for arrays of perfectly conducting cylinders,” Phys. Rev. E 52, 1135–1145 (1995). [CrossRef]
  27. K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116 (2001). [CrossRef]
  28. T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117 (2001). [CrossRef]
  29. O. Takayama and M. Cada, “Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths,” Appl. Phys. Lett. 85, 1311–1313 (2004). [CrossRef]
  30. M. Qiu and S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys. 87, 8268–8275 (2000). [CrossRef]
  31. E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys. 91, 960–968 (2002). [CrossRef]
  32. A. Raman and S. Fan, “Photonic band structure of dispersive meta-materials formulated as a Hermitian eigenvalue problem,” Phys. Rev. Lett. 104, 087401 (2010). [CrossRef]
  33. E. Moreno, D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B 65, 155120 (2002). [CrossRef]
  34. H. van der Lem, A. Tip, and A. Moroz, “Band structure of absorptive two-dimensional photonic crystals,” J. Opt. Soc. Am. B 20, 1334–1341 (2003). [CrossRef]
  35. A. Modinos, N. Stefanou, and V. Yannopapas, “Applications of the layer-KKR method to photonic crystals,” Opt. Express 8, 197–202 (2001). [CrossRef]
  36. A. Moroz, “Metallo-dielectric diamond and zinc-blende photonic crystals,” Phys. Rev. B 66, 115109 (2002). [CrossRef]
  37. S. Liu and Z. Lin, “Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres,” Phys. Rev. E 73, 066609 (2006). [CrossRef]
  38. J. Arriaga, A. J. Ward, and J. B. Pendry, “Order-N photonic band structures for metals and other dispersive materials,” Phys. Rev. B 59, 1874–1877 (1999). [CrossRef]
  39. Y. Tsuji and M. Koshiba, “Finite element method using port truncation by perfectly matched layer boundary conditions for optical waveguide discontinuity problems,” J. Lightwave Technol. 20, 463–468 (2002). [CrossRef]
  40. W. J. Kim and J. D. O’Brien, “Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite-element method,” J. Opt. Soc. Am. B 21, 289–295 (2004). [CrossRef]
  41. N. Kono and Y. Tsuji, “A novel finite-element method for nonreciprocal magneto-photonic crystal waveguides,” J. Lightwave Technol. 22, 1741–1747 (2004). [CrossRef]
  42. “COMSOL Multiphysics,” 2005, www.comsol.com .
  43. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.,” Appl. Opt. 24, 4493–4499 (1985). [CrossRef]
  44. M. Davanco, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express 15, 9681–9691 (2007). [CrossRef]
  45. B. P. Hiett, J. M. Generowicz, S. J. Cox, M. Molinari, D. H. Beckett, and K. S. Thomas, “Application of finite element methods to photonic crystal modelling,” IEE Proc. A Sci. Meas. Technol. 149, 293–296 (2002). [CrossRef]
  46. C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D metamaterial/photonic crystals,” Opt. Express 19, 19027–19041 (2011). [CrossRef]
  47. T. Yamashita and C. J. Summers, “Evaluation of self-collimated beams in photonic crystals for optical interconnect,” IEEE J. Sel. Areas Commun. 23, 1341–1347 (2005). [CrossRef]
  48. M. Qiu and S. He, “Guided modes in a two-dimensional metallic photonic crystal waveguide,” Phys. Lett. A 266, 425–429 (2000). [CrossRef]
  49. J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express 20, 17271–17280 (2012). [CrossRef]
  50. Z. Jian, J. Pearce, and D. M. Mittleman, “Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy,” Semicond. Sci. Technol. 20, S300–S306 (2005). [CrossRef]
  51. M.-C. Lin and R.-F. Jao, “Finite element analysis of photon density of states for two-dimensional photonic crystals with in-plane light propagation,” Opt. Express 15, 207–218 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited