OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 31 — Nov. 1, 2013
  • pp: 7498–7503

Ultrashort hybrid metal–insulator plasmonic directional coupler

Mahmoud Talafi Noghani and Mohammad Hashem Vadjed Samiei  »View Author Affiliations


Applied Optics, Vol. 52, Issue 31, pp. 7498-7503 (2013)
http://dx.doi.org/10.1364/AO.52.007498


View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultrashort plasmonic directional coupler based on the hybrid metal–insulator slab waveguide is proposed and analyzed at the telecommunication wavelength of 1550 nm. It is first analyzed using the supermode theory based on mode analysis via the transfer matrix method in the interaction region. Then the 2D model of the coupler, including transition arms, is analyzed using a commercial finite-element method simulator. The hybrid slab waveguide is composed of a metallic layer of silver and two dielectric layers of silica (SiO2) and silicon (Si). The coupler is optimized to have a minimum coupling length and to transfer maximum power considering the layer thicknesses as optimization variables. The resulting coupling length in the submicrometer region along with a noticeable power transfer efficiency are advantages of the proposed coupler compared to previously reported plasmonic couplers.

© 2013 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: June 12, 2013
Revised Manuscript: September 29, 2013
Manuscript Accepted: October 4, 2013
Published: October 24, 2013

Citation
Mahmoud Talafi Noghani and Mohammad Hashem Vadjed Samiei, "Ultrashort hybrid metal–insulator plasmonic directional coupler," Appl. Opt. 52, 7498-7503 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-31-7498


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000). [CrossRef]
  2. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005). [CrossRef]
  3. R. Zia, M. D. Selker, P. B. Catrysse, and M. I. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004). [CrossRef]
  4. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005). [CrossRef]
  5. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007). [CrossRef]
  6. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  7. R. Salvador, A. Martinez, C. G. Meca, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008). [CrossRef]
  8. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 1–3 (2010).
  9. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Theoretical analysis of hybrid plasmonic waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 4602008 (2013). [CrossRef]
  10. M. T. Noghani and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013). [CrossRef]
  11. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005). [CrossRef]
  12. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006). [CrossRef]
  13. H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40, 3025–3029 (2008). [CrossRef]
  14. P. Dastmalchi, N. Granpayeh, and M. Rasouli Disfani, “Investigation of coupling length in a semi-cylindrical surface plasmonic coupler,” Appl. Phys. A 103, 741–744 (2011). [CrossRef]
  15. P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, “Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure,” Opt. Express 19, 7633–7639 (2011). [CrossRef]
  16. Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 413–422 (2006).
  17. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Design and characterization of dielectric-loaded plasmonic directional couplers,” J. Lightwave Technol. 27, 5521–5528 (2009). [CrossRef]
  18. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Polarization-independent hybrid plasmonic coupler for a silicon on insulator platform,” Opt. Lett. 37, 3417–3419 (2012). [CrossRef]
  19. E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited