OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 31 — Nov. 1, 2013
  • pp: 7504–7511

Study on active lap tool influence function in grinding 1.8 m primary mirror

Liu Haitao, Zeng Zhige, Wu Fan, Fan Bin, and Wan Yongjian  »View Author Affiliations


Applied Optics, Vol. 52, Issue 31, pp. 7504-7511 (2013)
http://dx.doi.org/10.1364/AO.52.007504


View Full Text Article

Enhanced HTML    Acrobat PDF (1569 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical modeling method to predict the ring tool influence function (TIF) based on the computer-controlled active lap process. The gap on the lap-grinding layer is considered, and its influence on the ring TIF is analyzed too. The relationship between the shape of the ring TIF and the lap-workpiece rotation speed ratio is discussed in this paper. The recipe for calculating dwell time for axisymmetric fabrication is discussed. The grinding process of a 1.8 m primary mirror is improved based on these results. The grinding process is accomplished after 30 circles of grinding, and the surface shape error is from PV 82 μm RMS 16.4 μm reduced to PV 13.5 μm RMS 2.5 μm.

© 2013 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(230.4040) Optical devices : Mirrors

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: August 2, 2013
Revised Manuscript: September 30, 2013
Manuscript Accepted: October 2, 2013
Published: October 24, 2013

Citation
Liu Haitao, Zeng Zhige, Wu Fan, Fan Bin, and Wan Yongjian, "Study on active lap tool influence function in grinding 1.8 m primary mirror," Appl. Opt. 52, 7504-7511 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-31-7504


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Martin, D. Anderson, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8  m f/1 mirror,” Proc. SPIE 1236, 682–690 (1990). [CrossRef]
  2. D. S. Anderson, J. R. P. Angel, J. Burge, W. B. Davison, S. T. DeRigne, B. B. Hille, D. A. Ketelsen, W. C. Kittrell, H. M. Martin, R. H. Nagel, T. J. Trebisky, S. C. West, and R. S. Young, “Stressed-lap polishing of 3.5  m f/1.5 and 1.8  m f/1.0 mirrors,” Proc. SPIE 1531, 260–269 (1992). [CrossRef]
  3. D. Anderson, H. Martin, J. Burge, D. A. Ketelsen, and S. C. West, “Rapid fabrication strategies for primary and secondary mirrors at Steward Observatory Mirror Laboratory,” Proc. SPIE 2199, 199–210 (1994). [CrossRef]
  4. H. M. Martin, R. G. Allen, and J. H. Burge, “Polishing of a 6.5  m f/1.25 mirror for the first Magellan telescope,” Proc. SPIE 3739, 47–55 (1999). [CrossRef]
  5. H. M. Martin, J. H. Burge, B. Cuerden, W. B. Davison, J. S. Kingsley, R. D. Lutz, S. M. Miller, and M. Tuell, “Manufacture of a combined primary and tertiary mirror for the Large Synoptic Survey Telescope,” Proc. SPIE 7018, 70180G (2008). [CrossRef]
  6. H. M. Martin, R. G. Allen, J. H. Burge, D. W. Kim, J. S. Kingsley, M. T. Tuell, S. C. West, C. Zhao, and T. Zobrist, “Fabrication and testing of the first 8.4  m off-axis segment for the Giant Magellan Telescope,” Proc. SPIE 7709, 77390A (2010). [CrossRef]
  7. B. Fan, Z. Zeng, X. Li, Q. Chen, P. Gao, J. Zhou, and Y. Wan, “Grinding and polishing technology by computer controlled active lap for Φ1250  mm F/1.5 aspheric mirror,” Proc. SPIE 7654, 765409 (2010). [CrossRef]
  8. F. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 9, 214–256 (1927).
  9. C. Miao, J. C. Lambropoulos, and S. D. Jacob, “Process parameter effects on material removal in magnetorheological finishing of borosilicate glass,” Appl. Opt. 49, 1951–1963 (2010). [CrossRef]
  10. Z. Li, S. Li, Y. Dai, and X. Peng, “Optimization and application of influence function in abrasive jet polishing,” Appl. Opt. 49, 2947–2953 (2010). [CrossRef]
  11. D. W. Kim and S. W. Kim, “Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes,” Opt. Express 13, 910–917 (2005). [CrossRef]
  12. H. Li, W. David, G. Yu, and W. Zhang, “Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope,” Appl. Opt. 52, 5781–5787 (2013). [CrossRef]
  13. B. Fan, Y. Wan, L. Yang, Z. Zeng, J. Deng, and X. Li, “The grind and polish prediction of computer controlled active lap,” Proc. SPIE 6148, 61480Z (2006). [CrossRef]
  14. D. W. Kim, S. W. Kim, and J. H. Burge, “Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,” Opt. Express 17, 21850–21866 (2009). [CrossRef]
  15. Z. Zeng, J. Deng, X. Li, N. Ling, and W. Jiang, “Investigation of deformation experiment for active polishing lap,” High Power Laser and Particle Beams 16, 555–559 (2004).
  16. L. Zhang and Z. Zeng, “Structural optimization of active stressed lap,” Opt. Electron. Eng. 34, 11–15 (2007).
  17. S. C. West, H. M. Martin, R. H. Nagel, R. S. Young, W. B. Davison, T. J. Trebisky, S. T. DeRigne, and B. B. Hille, “Practical design and performance of the stressed-lap polishing tool,” Appl. Opt. 33, 8094–8100 (1994). [CrossRef]
  18. Y. Li and D. Wang, “New design deforming controlling system of the active stressed lap,” Proc. SPIE 7018, 701833 (2008). [CrossRef]
  19. M. Chen, Y. Feng, Y. Wan, L. Yang, and B. Fan, “Neural network based surface shape modeling of stressed lap optical polishing,” Appl. Opt. 49, 1350–1354 (2010). [CrossRef]
  20. X. Luo, L. Zheng, and X. Zhang, “Finite element analysis simulation and experimental verification of the stressed lap’s deformation accuracy,” Appl. Opt. 50, 782–787 (2011). [CrossRef]
  21. A. Cordero-Davila, J. Gonzalez-Garcia, M. Pedrayes-Lopez, L. A. Aguilar-Chiu, J. Cuautle-Cortes, and C. Robledo-Sanchez, “Edge effects with the Preston equation for a circular tool and workpiece,” Appl. Opt. 43, 1250–1254 (2004). [CrossRef]
  22. “Adaptive quadrature,” Wikipedia, http://en.wikipedia.org/wiki/Adaptive_quadrature .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited