OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 31 — Nov. 1, 2013
  • pp: 7512–7516

Photonic generation of ultrawideband signals based on a gain-switched semiconductor laser with optical feedback

Mingjiang Zhang, Ming Liu, Anbang Wang, Yongning Ji, Zhe Ma, Junfeng Jiang, and Tiegen Liu  »View Author Affiliations

Applied Optics, Vol. 52, Issue 31, pp. 7512-7516 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (500 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple photonic approach to generate ultrawideband (UWB) pulse signals utilizing a gain-switched semiconductor laser with optical feedback is proposed and demonstrated. The RF spectrum of the generated chaotic UWB signals has a 10dB bandwidth of 9 GHz and central frequency of 6.6 GHz (fractional bandwidth of 155%), which is consistent with the Federal Communications Commission indoor mask. The central frequency and 10dB bandwidth can be tuned by adjusting the bias current and feedback strength of the semiconductor laser. After transmission through a 30 km single-mode fiber, the spectrum shape of the chaotic UWB signals is almost unaffected by the chromatic dispersion of the fiber.

© 2013 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(140.5960) Lasers and laser optics : Semiconductor lasers
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 17, 2013
Revised Manuscript: September 28, 2013
Manuscript Accepted: October 7, 2013
Published: October 24, 2013

Mingjiang Zhang, Ming Liu, Anbang Wang, Yongning Ji, Zhe Ma, Junfeng Jiang, and Tiegen Liu, "Photonic generation of ultrawideband signals based on a gain-switched semiconductor laser with optical feedback," Appl. Opt. 52, 7512-7516 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003). [CrossRef]
  2. S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE 92, 295–311 (2004). [CrossRef]
  3. D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24, 839–841 (2012).
  4. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25, 3219–3235 (2007). [CrossRef]
  5. S. L. Pan and J. P. Yao, “Optical generation of polarity- and shape-switchable ultrawideband pulses using a chirped intensity modulator and a first-order asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34, 1312–1314 (2009). [CrossRef]
  6. F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45, 1247–1249 (2009). [CrossRef]
  7. Y. Yuan, J. J. Dong, X. Li, and X. L. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photonics Technol. Lett. 23, 1754–1756 (2011). [CrossRef]
  8. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17, 5023–5032 (2009). [CrossRef]
  9. F. Z. Zhang, J. Wu, S. N. Fu, Y. Li, X. B. Hong, P. Shum, and J. T. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 18, 15870–15875 (2010). [CrossRef]
  10. E. B. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photonics Technol. Lett. 22, 1063–1065 (2010). [CrossRef]
  11. M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning,” IEEE Photonics Technol. Lett. 20, 135–137 (2008). [CrossRef]
  12. X. B. Yu, T. B. Gibbon, M. Pawlik, S. Blaabeg, and I. T. Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17, 9680–9687 (2009). [CrossRef]
  13. X. H. Feng, Z. H. Li, B. O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express 18, 3643–3648 (2010). [CrossRef]
  14. H. W. Chen, T. L. Wang, M. Li, M. H. Chen, and S. Z. Xie, “Optically tunable multiband UWB pulse generation,” Opt. Express 16, 7447–7452 (2008). [CrossRef]
  15. Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser,” Opt. Express 18, 9664–9670 (2010). [CrossRef]
  16. J. Y. Zheng, N. H. Zhu, L. X. Wang, J. G. Liu, and H. G. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photonics J. 4, 657–663 (2012). [CrossRef]
  17. W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express 20, 20222–20227 (2012). [CrossRef]
  18. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010). [CrossRef]
  19. Y. Peled, M. Tur, and A. Zadok, “Generation and detection of ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22, 1692–1694 (2010). [CrossRef]
  20. M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 59, 3531–3537 (2011). [CrossRef]
  21. J. Y. Zheng, M. J. Zhang, A. B. Wang, and Y. C. Wang, “Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback,” Opt. Lett. 35, 1734–1736 (2010). [CrossRef]
  22. M. J. Zhang, T. G. Liu, A. B. Wang, J. Y. Zheng, L. N. Meng, Z. X. Zhang, and Y. C. Wang, “Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser,” Opt. Lett. 36, 1008–1010 (2011). [CrossRef]
  23. H. Shams, A. K. Anandarajah, P. Perry, P. Anandarajah, and L. P. Barry, “Electro-optical generation and distribution of ultrawideband signals based on the gain switching technique,” J. Opt. Commun. Netw. 2, 122–130 (2010). [CrossRef]
  24. Y. Nakache and A. F. Molisch, “Spectral shape of UWB signals influence of modulation format, multiple access scheme and pulse shape,” in Proceedings of the IEEE Vehicular Technology Conference (2003), Vol. 4, pp. 2510–2516.
  25. A. S. Dmitriev, M. Hasler, A. I. Panas, and K. V. Zakharchenko, “Basic principles of direct chaotic communications,” Nonlinear Phenom. Complex Syst. 6, 488–501 (2003).
  26. J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18, 16955–16972 (2010). [CrossRef]
  27. Y. Liu, N. Kikuchi, and J. Ohtsubo, “Controlling dynamical behavior of a semiconductor laser with external optical feedback,” Phys. Rev. E 51, R2697–R2700 (1995). [CrossRef]
  28. X. F. Wang, G. Q. Xia, and Z. M. Wu, “Theoretical investigations on the polarization performances of current-modulated VCSELs subject to weak optical feedback,” J. Opt. Soc. Am. B 26, 160–168 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited