OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 31 — Nov. 1, 2013
  • pp: 7530–7539

Real-time visual sensing system achieving high-speed 3D particle tracking with nanometer resolution

Peng Cheng, Sissy M. Jhiang, and Chia-Hsiang Menq  »View Author Affiliations

Applied Optics, Vol. 52, Issue 31, pp. 7530-7539 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a real-time visual sensing system, which is created to achieve high-speed three-dimensional (3D) motion tracking of microscopic spherical particles in aqueous solutions with nanometer resolution. The system comprises a complementary metal–oxide-semiconductor (CMOS) camera, a field programmable gate array (FPGA), and real-time image processing programs. The CMOS camera has high photosensitivity and superior SNR. It acquires images of 128×120 pixels at a frame rate of up to 10,000 frames per second (fps) under the white light illumination from a standard 100 W halogen lamp. The real-time image stream is downloaded from the camera directly to the FPGA, wherein a 3D particle-tracking algorithm is implemented to calculate the 3D positions of the target particle in real time. Two important objectives, i.e., real-time estimation of the 3D position matches the maximum frame rate of the camera and the timing of the output data stream of the system is precisely controlled, are achieved. Two sets of experiments were conducted to demonstrate the performance of the system. First, the visual sensing system was used to track the motion of a 2 μm polystyrene bead, whose motion was controlled by a three-axis piezo motion stage. The ability to track long-range motion with nanometer resolution in all three axes is demonstrated. Second, it was used to measure the Brownian motion of the 2 μm polystyrene bead, which was stabilized in aqueous solution by a laser trapping system.

© 2013 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(150.6910) Machine vision : Three-dimensional sensing
(330.4150) Vision, color, and visual optics : Motion detection

ToC Category:
Image Processing

Original Manuscript: August 2, 2013
Revised Manuscript: October 4, 2013
Manuscript Accepted: October 4, 2013
Published: October 28, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Peng Cheng, Sissy M. Jhiang, and Chia-Hsiang Menq, "Real-time visual sensing system achieving high-speed 3D particle tracking with nanometer resolution," Appl. Opt. 52, 7530-7539 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  3. Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nano particles,” Rev. Sci. Instrum. 80, 063107 (2009). [CrossRef]
  4. J. Wan, Y. Huang, S. Jhiang, and C. H. Menq, “Real-time in situ calibration of an optically trapped probing system,” Appl. Opt. 48, 4832–4841 (2009). [CrossRef]
  5. C. Gosse and V. Croquette, “Magnetic tweezers: micromanipulation and force measurement at the molecular level,” Biophys. J. 82, 3314–3329 (2002). [CrossRef]
  6. Z. Zhang, Y. Huang, and C. H. Menq, “Actively controlled manipulation of a magnetic microbead using quadrupole magnetic tweezers,” IEEE/ASME Trans. Robot. 26, 531–541 (2010). [CrossRef]
  7. Z. Zhang, F. Long, and C. H. Menq, “Three-dimensional visual servo control of a magnetically propelled microscopic bead,” IEEE/ASME Trans. Robot. 29, 373–382 (2013). [CrossRef]
  8. A. L. Stout, “Detection and characterization of individual intermolecular bonds using optical tweezers,” Biophys. J. 80, 2976–2986 (2001). [CrossRef]
  9. M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, and J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001). [CrossRef]
  10. A. Caspi, R. Granek, and M. Elbaum, “Diffusion and directed motion in cellular transport,” Phys. Rev. E 66, 011916 (2002). [CrossRef]
  11. Z. Li, B. Anvari, M. Takashima, P. Brecht, J. H. Torres, and W. E. Brownell, “Membrane tether formation from outer hair cells with optical tweezers,” Biophys. J. 82, 1386–1395 (2002). [CrossRef]
  12. U. F. Keyser, J. van der Does, C. Dekker, and N. H. Dekker, “Optical tweezers for force measurements on DNA in nanopores,” Rev. Sci. Instrum. 77, 105105 (2006). [CrossRef]
  13. M. T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, M. Hallow, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, “A comparative study of living cell micromechanical properties by oscillatory optical tweezers,” Opt. Express 16, 8594–8603 (2008). [CrossRef]
  14. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers, and atomic force microscopy,” Nat. Methods 5, 491–505 (2008). [CrossRef]
  15. T. T. Perkins, “Optical traps for single molecule biophysics: a primer,” Laser Photon. Rev. 3, 203–220 (2009). [CrossRef]
  16. C. C. Huang, C. F. Wang, D. S. Mehta, and A. Chiou, “Optical tweezers as sub-pico-newton force transducers,” Opt. Commun. 195, 41–48 (2001). [CrossRef]
  17. Y. Huang, P. Cheng, and C. H. Menq, “Dynamic force sensing using an optically trapped probing system,” IEEE/ASME Trans. Mechatronics 16, 1145–1154 (2011). [CrossRef]
  18. C.-H. Chiou, Y.-Y. Huang, M.-H. Chiang, H.-H. Lee, and G.-B. Lee, “New magnetic tweezers for investigation of the mechanical properties of single DNA molecules,” Nanotechnol. 17, 1217–1224 (2006). [CrossRef]
  19. J. K. Fisher, J. Cribb, K. V. Desai, L. Vicci, B. Wilde, K. Keller, R. M. Taylor, J. Haase, K. Bloom, E. Timothy O’Brien, and R. Superfine, “Thin-foil magnetic force system for high-numerical-aperture microscopy,” Rev. Sci. Instrum. 77, 023702 (2006). [CrossRef]
  20. F. J. Alenghat, B. Fabry, K. Y. Tsai, W. H. Goldmann, and D. E. Ingber, “Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer,” Biochem. Biophys. Res. Commun. 277, 93–99 (2000). [CrossRef]
  21. H. Huang, C. Y. Dong, H.-S. Kwon, J. D. Sutin, R. D. Kamm, and P. T. C. So, “Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation,” Biophys. J. 82, 2211–2223 (2002). [CrossRef]
  22. B. G. Hosu, K. Jakab, P. Banki, and F. I. Toth, “Magnetic tweezers for intracellular applications,” Rev. Sci. Instrum. 74, 4158–4163 (2003). [CrossRef]
  23. A. H. B. de Vries, B. E. Krenn, R. van Driel, and J. S. Kanger, “Micro magnetic tweezers for nanomanipulation inside live cells,” Biophys. J. 88, 2137–2144 (2005). [CrossRef]
  24. J. S. Kanger, V. Subramaniam, and R. van Driel, “Intracellular manipulation of chromatin using magnetic nanoparticles,” Chromosome Res. 16, 511–522 (2008). [CrossRef]
  25. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999). [CrossRef]
  26. A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express 15, 13434–13445 (2007). [CrossRef]
  27. L. Friedrich and A. Rohrbach, “Improved interferometric tracking of trapped particles using two frequency-detuned beams,” Opt. Lett. 35, 1920–1922 (2010). [CrossRef]
  28. Z. Zhang and C. H. Menq, “Three-dimensional particle tracking with subnanometer resolution using off-focus images,” Appl. Opt. 47, 2361–2370 (2008). [CrossRef]
  29. Z. Zhang and C. H. Menq, “Best linear unbiased axial localization in three-dimensional fluorescent bead tracking with subnanometer resolution using off-focus images,” J. Opt. Soc. Am. A 26, 1484–1493 (2009). [CrossRef]
  30. O. Ueberschar, C. Wagner, T. Stangner, C. Gutsche, and F. Kremer, “A novel video-based microsphere localization algorithm for low contrast silica particles under white light illumination,” Opt. Laser Eng. 50, 423–439 (2012). [CrossRef]
  31. F. Aguet, D. Van de Ville, and M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10503–10522 (2005). [CrossRef]
  32. T. Ragan, H. Huang, P. So, and E. Gratton, “3D particle tracking on a two-photon microscope,” Biophys. J. 16, 325–336 (2006).
  33. D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19, 3835–3842 (2011). [CrossRef]
  34. O. Otto, J. L. Gornall, G. Stober, F. Czerwinski, R. Seidel, and U. F. Keyser, “High-speed video-based tracking of optically trapped colloids,” J. Opt. 13, 044011 (2011). [CrossRef]
  35. O. Otto, F. Czerwinski, J. L. Gornall, G. Stober, L. B. Oddershede, R. Seidel, and U. F. Keyser, “Real-time particle tracking at 10,000 fps using optical fiber illumination,” Opt. Express 18, 22722–22733 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited