OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 31 — Nov. 1, 2013
  • pp: 7554–7563

Calibrating a high-resolution wavefront corrector with a static focal-plane camera

Visa Korkiakoski, Niek Doelman, Johanan Codona, Matthew Kenworthy, Gilles Otten, and Christoph U. Keller  »View Author Affiliations

Applied Optics, Vol. 52, Issue 31, pp. 7554-7563 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2025 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to calibrate a high-resolution wavefront (WF)-correcting device with a single, static camera, located in the focal-plane; no moving of any component is needed. The method is based on a localized diversity and differential optical transfer functions to compute both the phase and amplitude in the pupil plane located upstream of the last imaging optics. An experiment with a spatial light modulator shows that the calibration is sufficient to robustly operate a focal-plane WF sensing algorithm controlling a WF corrector with 40,000 degrees of freedom. We estimate that the locations of identical WF corrector elements are determined with a spatial resolution of 0.3% compared to the pupil diameter.

© 2013 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(110.4850) Imaging systems : Optical transfer functions
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(070.6120) Fourier optics and signal processing : Spatial light modulators
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

Original Manuscript: July 12, 2013
Revised Manuscript: October 1, 2013
Manuscript Accepted: October 1, 2013
Published: October 28, 2013

Visa Korkiakoski, Niek Doelman, Johanan Codona, Matthew Kenworthy, Gilles Otten, and Christoph U. Keller, "Calibrating a high-resolution wavefront corrector with a static focal-plane camera," Appl. Opt. 52, 7554-7563 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. U. Keller, V. Korkiakoski, N. Doelman, R. Fraanje, R. Andrei, M. Verhaegen, “Extremely fast focal-plane wavefront sensing for extreme adaptive optics,” Proc. SPIE 8447, 844721 (2012). [CrossRef]
  2. V. Korkiakoski, C. U. Keller, N. Doelman, R. Fraanje, R. Andrei, M. Verhaegen, “Experimental validation of optimization concepts for focal-plane image processing with adaptive optics,” Proc. SPIE 8447, 84475Z (2012). [CrossRef]
  3. J. L. Codona, “Theory and application of differential otf (dotf) wavefront sensing,” Proc. SPIE 8447, 84476P (2012). [CrossRef]
  4. J. L. Codona, N. Doble, “Experimental evaluation of differential OTF (dOTF) wavefront sensing,” Proc. SPIE 8447, 84476R (2012). [CrossRef]
  5. J. L. Codona, “Differential optical transfer function wavefront sensing,” Opt. Eng. 52, 097105 (2013). [CrossRef]
  6. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  7. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  8. T. P. Zielinski, “Robust image-based wavefront sensing,” Ph.D. thesis (University of Rochester, 2011).
  9. G. R. Brady, J. R. Fienup, “Measurement range of phase retrieval in optical surface and wavefront metrology,” Appl. Opt. 48, 442–449 (2009). [CrossRef]
  10. S. Mann, R. Picard, “Being ‘undigital’ with digital cameras: extending dynamic range by combining differently exposed pictures,” (M.I.T. Media Lab Perceptual Computing Section, 1994).
  11. J. Reményi, P. Várhegyi, L. Ódomján, P. Koppa, E. Lorincz, “Amplitude, phase, and hybrid ternary modulation modes of a twisted-nematic liquid-crystal display at 400 nm,” Appl. Opt. 42, 3428–3434 (2003). [CrossRef]
  12. D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping-Theory, Algorithms, and Software (Wiley, 1998).
  13. M. Kasper, D. Mawet, C. Verinaud, “Roadmap for PCS,” in Third International Conference on Adaptive Optics for Extremely Large Telescopes (2013).
  14. L. A. Poyneer, B. Bauman, S. Cornelissen, J. Isaacs, S. Jones, B. A. Macintosh, D. W. Palmer, “The use of a high-order MEMS deformable mirror in the Gemini Planet Imager,” Proc. SPIE 7931, 793104 (2011). [CrossRef]
  15. A. Give’on, B. Kern, S. Shaklan, D. C. Moody, L. Pueyo, “Broadband wavefront correction algorithm for high-contrast imaging systems,” Proc. SPIE 6691, 66910A (2007). [CrossRef]
  16. A. E. Lowman, J. T. Trauger, B. Gordon, J. J. Green, D. Moody, A. F. Niessner, F. Shi, “High-contrast imaging testbed for the terrestrial planet finder coronagraph,” Proc. SPIE 5487, 1246–1254 (2004). [CrossRef]
  17. S. A. Severson, B. Bauman, D. Dillon, J. Evans, D. Gavel, B. Macintosh, K. Morzinski, D. Palmer, L. Poyneer, “The extreme adaptive optics testbed at UCSC: current results and coronagraphic upgrade,” Proc. SPIE 6272, 62722J (2006). [CrossRef]
  18. E. Vernet, M. Kasper, C. Vérinaud, E. Fedrigo, S. Tordo, N. Hubin, S. Esposito, E. Pinna, A. Puglisi, A. Tozzi, A. G. Basden, S. J. Goodsell, G. D. Love, R. M. Myers, “Extreme adaptive optics system optimization with the high order test bench,” Proc. SPIE 6272, 62722K (2006). [CrossRef]
  19. J. Antichi, C. Vérinaud, O. Preis, A. Delboulbé, G. Zins, P. Rabou, J.-L. Beuzit, S. Dandy, J.-F. Sauvage, T. Fusco, E. Aller-Carpentier, M. Kasper, N. Hubin, “FFREE: a Fresnel-FRee experiment for EPICS, the EELT planets imager,” Proc. SPIE 7736, 773639 (2010).
  20. B. Macintosh, J. Graham, D. Palmer, R. Doyon, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, J. K. Wallace, B. Bauman, J. Evans, D. Erikson, K. Morzinski, D. Phillion, L. Poyneer, A. Sivaramakrishnan, R. Soummer, S. Thibault, J.-P. Veran, “The Gemini Planet Imager,” Proc. SPIE 6272, 62720L (2006). [CrossRef]
  21. T. Fusco, G. Rousset, J.-F. Sauvage, C. Petit, J.-L. Beuzit, K. Dohlen, D. Mouillet, J. Charton, M. Nicolle, M. Kasper, P. Baudoz, P. Puget, “High-order adaptive optics requirements for direct detection of extrasolar planets: application to the SPHERE instrument,” Opt. Express 14, 7515–7534 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited