OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 31 — Nov. 1, 2013
  • pp: 7638–7647

Process variation in silicon photonic devices

Xi Chen, Moustafa Mohamed, Zheng Li, Li Shang, and Alan R. Mickelson  »View Author Affiliations


Applied Optics, Vol. 52, Issue 31, pp. 7638-7647 (2013)
http://dx.doi.org/10.1364/AO.52.007638


View Full Text Article

Enhanced HTML    Acrobat PDF (1270 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An array of passive silicon-on-insulator optical devices is laid out in repeating patterns on four foundry-fabricated wafers. The physical and optical characterization of these microrings, racetrack resonators, and directional couplers are found to exhibit significant variation in optical response. A device-heating experiment carried out on a number of different devices demonstrates that thermal effects are independent of the device’s location on the wafer. An analysis of the variation of the optical responses of the room-temperature devices is used to determine the process variation. We find that if we form successive arrays of the values of a quantity of interest (the peak wavelength of a transfer function) at a single device at some point on the wafer, and then increase the size of the array by including the values of the devices at ever greater distances from the original, then the variance of the values of the successive arrays increases linearly with the linear extent of the sample. That is, the process variation exhibits “random walk” pattern with spatial extent. We express the process variation in units of variance per length and find that our measured values agree with others in the literature; that is, the process variation is approximately 1nm2/cm.

© 2013 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: June 20, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 13, 2013
Published: October 31, 2013

Citation
Xi Chen, Moustafa Mohamed, Zheng Li, Li Shang, and Alan R. Mickelson, "Process variation in silicon photonic devices," Appl. Opt. 52, 7638-7647 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-31-7638


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008). [CrossRef]
  2. M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. (to be published).
  3. http://www.epixfab.eu .
  4. http://www.europractice.com .
  5. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010). [CrossRef]
  6. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010). [CrossRef]
  7. C. Nitta, M. Farrens, and V. Akella, “Addressing system-level trimming issues in on-chip nanophotonic networks,” in IEEE 17th International Symposium on High Performance Computer Architecture (HPCA) (IEEE, 2011), pp. 122–131.
  8. C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express 19, 5143–5148 (2011). [CrossRef]
  9. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010). [CrossRef]
  10. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33, 2185–2187 (2008). [CrossRef]
  11. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5  μm in silicon etalon,” Electron. Lett. 28, 83–85 (1992). [CrossRef]
  12. I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo-optical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006). [CrossRef]
  13. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Robinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15, 7557–7563 (2007). [CrossRef]
  14. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides,” in 6th IEEE International Conference, Group IV Photonics, 2009 (IEEE, 2009), pp. 77–79.
  15. Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55  μm wavelength using a silica-based athermal waveguide,” Electron. Lett. 34, 367–369 (1998). [CrossRef]
  16. M. Mohamed, Z. Li, X. Chen, L. Shang, A. Mickelson, M. Vachharajani, and Y. Sun, “Power-efficient, variation-aware photonic on-chip network,” in International Symposium on Low Power Electronics and Design, August18–20, 2010.
  17. Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson, R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling and management of nanophotonic on-chip networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 98–111 (2012). [CrossRef]
  18. S. K. Selvaraja, “Wafer-scale fabrication technology for silicon photonic integrated circuits,” Ph.D. thesis, Ghent University (2011).
  19. S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using wafer-scale corrective etching for silicon nano-photonic device,” in Proceedings of the 2011 Annual Symposium of the IEEE Photonics Benelux Chapter,” P. Bienstman, G. Mortier, G. N. Roelkens, and M. Verbist, eds. (IEEE Photonics Society, 2011), pp. 289–292.
  20. Z. Li, A. Mickelson, L. Shang, M. Vachharjani, D. Filipovic, W. Park, and Y. Sun, “Spectrum: a hybrid nanophotonic-electric on-chip network,” in Design Automation Conference, San Francisco, CA, 2009.
  21. Z. Li, J. Wu, L. Shang, A. Mickelson, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun, “A high-performance low-power nanophotonic on-chip network,” in Proceedings of the International Symposium on Low Power Electronics and Design, ISLPED, California, 2009.
  22. Z. Li, M. Mohamed, X. Chen, A. Mickelson, and L. Shang, “Device modeling and system simulation of nanophotonic on-chip networks for reliability, power and performance,” in Design Automation Conference, New York, 2011.
  23. Z. Li, M. Mohamed, H. Zhou, L. Shang, A. Mickelson, D. Filipović, M. Vachharajani, X. Chen, W. Park, and Y. Sun, “Global on-chip coordination at light speed,” IEEE Des. Test Comput. 27, 54–67 (2010).
  24. Z. Li, M. Mohamed, X. Chen, H. Zhou, L. Shang, A. Mickelson, and M. Vachharajani, “Iris: a hybrid nanophotonic network design for high performance and low-power on-chip communication,” ACM J. Emerging Technol. Comput. Syst. 7, 1 (2011). [CrossRef]
  25. K. Chiang, “Effective-index method for the analysis of optical waveguide couplers and arrays: an asymptotic theory,” J. Lightwave Technol. 9, 62–72 (1991). [CrossRef]
  26. X. Chen, Z. Li, M. Mohamed, L. Shang, and A. R. Mickelson, “Parameter extraction from fabricated silicon photonic devices” Appl. Opt. (to be published).
  27. Commissariat a l’nergie atomique-laboratoire d’lectronique des technologies de l’information (CEA-LETI), http://www-leti.cea.fr/en .
  28. Interuniversity Microelectronics Centre (IMEC), http://www.alphagalileo.org/Organisations/Default.aspx?OrganisationId=1903 .
  29. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008). [CrossRef]
  30. B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  31. W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012). [CrossRef]
  32. C. T. Shih and S. Chao, “Simplified numerical method for analyzing TE-like modes in a three-dimensional circularly bent dielectric rib waveguide by solving two one-dimensional eigenvalue equations,” J. Opt. Soc. Am. B 25, 1031–1037 (2008). [CrossRef]
  33. M. Masi, R. Orobtchouk, G. Fan, J.-M. Fedeli, and L. Pavesi, “Towards a realistic modelling of ultra-compact racetrack resonators,” J. Lightwave Technol. 28, 3233–3242 (2010). [CrossRef]
  34. Q. Wang, G. Farrell, and T. Freir, “Effective index method for planar lightwave circuits containing directional couplers,” Opt. Commun. 259, 133–136 (2006). [CrossRef]
  35. L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThAA2.
  36. S. K. Selvaraja, K. D. Vos, W. Bogaerts, P. Bienstman, D. V. Thourhout, and R. Baets, “Effect of device density on the uniformity of silicon nano-photonic waveguide devices,” in IEEE LEOS Annual Meeting Conference Proceedings, Belek-Antalya, 2009.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited