OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 31 — Nov. 1, 2013
  • pp: 7660–7668

GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites

Aaron Pearlman, David Pogorzala, and Changyong Cao  »View Author Affiliations


Applied Optics, Vol. 52, Issue 31, pp. 7660-7668 (2013)
http://dx.doi.org/10.1364/AO.52.007660


View Full Text Article

Enhanced HTML    Acrobat PDF (694 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration’s Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

© 2013 Optical Society of America

OCIS Codes
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(010.5620) Atmospheric and oceanic optics : Radiative transfer
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 17, 2013
Revised Manuscript: October 2, 2013
Manuscript Accepted: October 6, 2013
Published: October 31, 2013

Citation
Aaron Pearlman, David Pogorzala, and Changyong Cao, "GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites," Appl. Opt. 52, 7660-7668 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-31-7660


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Schmit, M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. C. Bachmeier, “Introducing the next-generation advanced baseline imager on GOES-R,” Bull. Am. Meteorol. Soc. 86, 1079–1096 (2005). [CrossRef]
  2. M. Smith and D. Karlson, “The GOES-R series: the nation’s next-generation geostationary operational environmental satellites,” Earth Scientist 28, 18 (2012).
  3. J. C. Bremer, J. C. Criscione, M. S. Maxwell, J. A. Kronenwetter, and T. R. Pedersen, “Calibration of the solar reflective channels in an integrated operational weather satellite system in the era of NPOESS and GOES-R,” Proc. SPIE 5658, 38–48 (2005). [CrossRef]
  4. “Algorithm and Theoretical Basis Document: ABI Aerosol Detection Product,” NOAA/NESDIS/STAR September2010, http://www.goes-r.gov/resources/docs.html .
  5. “GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for suspended matter/aerosol optical depth and aerosol size parameter,” NOAA/NESDIS/STAR September2010, http://www.goes-r.gov/resources/docs.html .
  6. C. Cao, M. Weinreb, and H. Xu, “Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers,” J. Atmos. Ocean. Technol. 21, 537–542 (2004). [CrossRef]
  7. L. Wang, X. Wu, Y. Li, M. Goldberg, and S. Sohn, “Comparison of AIRS and IASI radiances using GOES imagers as transfer radiometers toward climate data records,” J. Appl. Meteorol. 49, 478–492 (2010). [CrossRef]
  8. C. Cao, F. J. De Luccia, X. Xiong, R. Wolfe, and F. Weng, “Early on-orbit performance of the visible infrared imaging radiometer suite onboard the suomi national polar-orbiting partnership (S-NPP) satellite,” IEEE T Geosci. Remote 0196, 2892 (2013). [CrossRef]
  9. C. Schueler, J. E. Clement, P. E. Ardanuy, C. Welsch, F. DeLuccia, and H. Swenson, “NPOESS VIIRS sensor design overview,” Proc. SPIE 4483, 11–23 (2002). [CrossRef]
  10. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCUS),” Appl. Opt. 45, 8218–8237 (2006). [CrossRef]
  11. C. Cao, M. Weinreb, and S. Kaplan, “Verification of the HIRS spectral response functions for more accurate atmospheric sounding,” presented at CALCON Technical Conference on Characterization and Radiometric Calibration for Remote Sensing, Logan, Utah, U.S., August2004.
  12. P. M. Teillet, G. Fedosejevs, K. J. Thome, and J. L. Barker, “Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain,” Remote Sens. Environ. 110, 393–409 (2007). [CrossRef]
  13. A. P. Trishchenkoa, J. Cihlara, and Z. Lia, “Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain,” Remote Sens. Environ. 110, 393–409 (2007). [CrossRef]
  14. M. Gunshor, T. J. Schmit, W. P. Menzel, and D. C. Tobin, “Intercalibration of broadband geostationary imagers using AIRS,” J. Atmos. Ocean. Technol. 26, 746–758 (2009). [CrossRef]
  15. L. Wang, C. Cao, and P. Ciren, “Assessing NOAA-16 HIRS radiance accuracy using simultaneous nadir overpass observations from AIRS,” J. Atmos. Ocean. Technol. 24, 1546–1561 (2007). [CrossRef]
  16. H. Cosnefroy, M. Leroy, and X. Briottet, “Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors,” Remote Sens. Environ. 58, 101–114 (1996). [CrossRef]
  17. C. R. N. Rao, C. Cao, and N. Zhang, “Inter-calibration of the moderate-resolution imaging spectroradiometer and the along track scanning radiometer-2,” Int. J. Remote Sens. 24, 1913–1924 (2003). [CrossRef]
  18. C. Nianzeng, B. G. Grant, D. E. Flittner, P. N. Slater, S. F. Biggar, R. D. Jackson, and S. M. Moran, “Results of calibrations of the NOAA-11 AVHRR made by reference to calibrated SPOT imagery at White Sands, New Mexico,” Proc. SPIE 1493, 182–194 (1991). [CrossRef]
  19. G. Chander, X. Xiong, T. Choi, and A. Angal, “Monitoring on-orbit calibration stability of the Terra/MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites,” Remote Sens. Environ. 114, 925–939 (2010). [CrossRef]
  20. O. Dubovik, A. Smirnov, N. Holben, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from aerosol robotic network (AERONET) sun and sky radiance measurements,” J. Geophys. Res. 105, 9797–9806 (2000).
  21. K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, and W. M. Balch, “Maritime aerosol optical thickness measured by handheld sun photometers,” Remote Sens. Environ. 93, 87–106 (2004). [CrossRef]
  22. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998). [CrossRef]
  23. https://cs.star.nesdis.noaa.gov/GOESRCWG/PublicData .
  24. https://cs.star.nesdis.noaa.gov/NCC/SpectralResponseVIIRS .
  25. S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. J. Klemm, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance,” Appl. Opt. 45, 6762–6774 (2006). [CrossRef]
  26. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” , Spectral Sciences, Inc. (1987).
  27. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006). [CrossRef]
  28. G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400  nm as measured by the SOLSPEC spectrometer from the atlas and Eureca mission,” Sol. Phys. 214, 1–22 (2003). [CrossRef]
  29. F. A. Kruse, A. B. Lefkoff, J. W. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, and A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993). [CrossRef]
  30. “GUM 1995 with minor Corrections: Evaluation of measurement data—Guide to the expression of uncertainty in measurement,” BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML, 2008, http://www.bipm.org/en/publications/guides/gum.html .
  31. A. Pearlman, Earth Resources Technology, 5825 University Research Ct. Suite 3250, College Park Maryland 20740, USA, R. Datla, R. Kacker, and C. Cao are preparing a manuscript to be called “Translating radiometric requirements for satellite sensors to match international standards.”
  32. R. Kacker, K. Sommer, and R. Kessel, “Evolution of modern approaches to express uncertainty in measurement,” Metrologia 44, 513 (2007). [CrossRef]
  33. “GOES-R Series Mission Requirements Document (MRD),” P417-R-MRD-0070, August2011, http://www.goes-r.gov/syseng/docs/MRDv314.pdf .
  34. N. Baker, “Joint Polar Satellite System (JPSS) VIIRS radiometric calibration Algorithm Theoretical Basis Document ATBD,” Goddard Space Flight Center 2012, http://npp.gsfc.nasa.gov/science/documents.html .
  35. J. L. Gardner, “Uncertainties in interpolated spectral data,” J. Res. Natl. Inst. Stan. 108, 69–78 (2003). [CrossRef]
  36. F. Callieco and F. Dell’Acqua, “A comparison between two radiative transfer models for atmospheric correction over a wide range of wavelengths,” Int. J. Remote Sens. 32, 1357–1370 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited