OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 32 — Nov. 10, 2013
  • pp: 7699–7705

Graded-size microlens array by the pyro-electrohydrodynamic continuous printing method

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, G. Nenna, C. Minarini, V. Vespini, L. Miccio, S. Grilli, and P. Ferraro  »View Author Affiliations

Applied Optics, Vol. 52, Issue 32, pp. 7699-7705 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (738 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the present work, the pyro-electrohydrodynamic technique was used for the realization of tunable-size microlens arrays. Poly(methyl methacrylate) dissolved in different solvent mixtures was used as the polymeric material for the realization of the microstructures. By controlling the experimental parameters and in particular, the volume of the drop reservoir, graded-size square arrays of tens of microlenses with focal length in the range 1.5–3 mm were produced. Moreover, the optical quality and geometrical features were investigated by profilometric and interferometric analysis.

© 2013 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(220.4610) Optical design and fabrication : Optical fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Devices

Original Manuscript: July 25, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 14, 2013
Published: November 4, 2013

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, G. Nenna, C. Minarini, V. Vespini, L. Miccio, S. Grilli, and P. Ferraro, "Graded-size microlens array by the pyro-electrohydrodynamic continuous printing method," Appl. Opt. 52, 7699-7705 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12, 2494–2500 (2004). [CrossRef]
  2. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003). [CrossRef]
  3. H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005). [CrossRef]
  4. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007). [CrossRef]
  5. C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005). [CrossRef]
  6. S. Yang, T. N. Krupenkin, P. Mach, and E. A. Chandross, “Tunable and latchable liquid microlens with photopolymerizable components,” Adv. Mater. 15, 940–943 (2003). [CrossRef]
  7. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004). [CrossRef]
  8. H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16, 2646–2652 (2008). [CrossRef]
  9. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlenses array for a compact large field of view compound eye camera,” Appl. Opt. 51, 1843–1852 (2012). [CrossRef]
  10. M. M. Vekshin, A. S. Levchenko, A. V. Nikitin, V. A. Nikitin, and N. A. Yacovenko, “Glass microlens arrays for Shack–Hartmann wavefront sensors,” Meas. Sci. Technol. 21, 054010 (2010). [CrossRef]
  11. P. Savander and H. J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541–543 (1993). [CrossRef]
  12. F. Merola, S. Coppola, V. Vespini, S. Grilli, and P. Ferraro, “Characterization of Bessel beams generated by polymeric microaxicons,” Meas. Sci. Technol. 23, 065204 (2012). [CrossRef]
  13. P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132–3134 (2001). [CrossRef]
  14. J. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42, 1996–2002 (2003). [CrossRef]
  15. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003). [CrossRef]
  16. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000). [CrossRef]
  17. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3172 (2003). [CrossRef]
  18. N. Chronis, G. L. Liu, K. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003). [CrossRef]
  19. H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A 4, S22–S28 (2002). [CrossRef]
  20. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A 6, 94–97 (2004). [CrossRef]
  21. C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759 (2006). [CrossRef]
  22. J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. Jun Huang, “Tunable optofluidic microlens through active pressure control of an air–liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010). [CrossRef]
  23. J. H. Zhu, J. X. Shi, Y. Wang, and P. S. He, “Spherical micro-lens array of PMMA produced by micro-molding,” Chin. J. Chem. Phys. 19, 443–446 (2006). [CrossRef]
  24. A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171–2176 (2000). [CrossRef]
  25. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). [CrossRef]
  26. W. Cheong, L. Yuan, V. Koudriachov, and W. Yu, “High sensitive SiO2/TiO2 hybrid sol–gel material for fabrication of 3 dimensional continuous surface relief diffractive optical elements by electron-beam lithography,” Opt. Express 10, 586–590 (2002). [CrossRef]
  27. D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, “Single-mask microfabrication technology of aspherical optics using KOH anisotropic etching,” Opt. Express 11, 2244–2252 (2003). [CrossRef]
  28. M. Wakaki, Y. Komachi, and G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998). [CrossRef]
  29. D. Kuang, X. Zhang, M. Gui, and Z. Fang, “Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency,” Appl. Opt. 48, 974–978 (2009). [CrossRef]
  30. E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50, 1974–1978 (2011). [CrossRef]
  31. S. I. E. Lin, “Study and implementation of a hybrid diffractive/refractive lens and a color inkjet head on high density data storage,” Appl. Opt. 50, 1091–1100 (2011). [CrossRef]
  32. I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, “Microstructuring of polymer films by inkjet etching,” J. Appl. Polym. Sci. 122, 3637–3643 (2011). [CrossRef]
  33. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1, 259–269 (2011). [CrossRef]
  34. I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Proc. SPIE 8082, 808244 (2011). [CrossRef]
  35. R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392, 223–225 (2001). [CrossRef]
  36. R. Pericet-Camara, A. Best, S. K. Nett, J. S. Gutmann, and E. Bonaccurso, “Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device,” Opt. Express 15, 9877–9882 (2007). [CrossRef]
  37. I. M. Hutchings, “Ink-jet printing in micro-manufacturing: opportunities and limitations,” in 4M/ICOMM—The Global Conference on Micro Manufacture, 2009, pp. 47–57.
  38. J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High resolution electrohydrodynamic printing,” Nat. Mater. 6, 781–789 (2007).
  39. K. Rahman, A. Khan, N. M. Muhammad, J. Jo, and K.-H. Choi, “Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing,” J. Micromech. Microeng. 22, 065012 (2012). [CrossRef]
  40. P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting,” Nat. Nanotechnol. 5, 429–435 (2010). [CrossRef]
  41. I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilliand, and P. Ferraro, “Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach,” Opt. Lett. 37, 2460–2462 (2012). [CrossRef]
  42. N. Maeda, J. N. Israelachvili, and M. M. Kohonen, “Evaporation and instabilities of microscopic capillary bridges,” Proc. Natl. Acad. Sci. USA 100, 803–808 (2003). [CrossRef]
  43. T. Miyashita, “Standardization for microlenses and microlens arrays,” Jpn. J. Appl. Phys. 46, 5391–5396 (2007).
  44. V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009). [CrossRef]
  45. M. S. Kim, T. Scharf, and H. P. Herzig, “Small-size microlens characterization by multiwavelength high-resolution interference microscopy,” Opt. Express 18, 14319–14329 (2010). [CrossRef]
  46. R. Kasztelanic, “Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays,” Appl. Opt. 49, 5486–5492 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited