OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 32 — Nov. 10, 2013
  • pp: 7706–7711

Arc fusion splicing effects in large-mode-area single-mode ytterbium-doped fibers

Ting Feng, Micah H. Jenkins, Fengping Yan, and Thomas K. Gaylord  »View Author Affiliations

Applied Optics, Vol. 52, Issue 32, pp. 7706-7711 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the first time the effects of arc fusion splicing on the residual stress and refractive index of large-mode-area single-mode ytterbium-doped fibers (YDFs) are investigated using a state-of-the-art three-dimensional concurrent stress-index measurement method. The results, based on a commercially available fiber, describe a host of perturbations that decrease the core/cladding refractive index difference by as much as 1.74×103 over an axial length of many hundreds of wavelengths. Simulations indicate that these perturbations result in an expansion of the mode-field-diameter by 39.6% and, based on the measured sample, result in an extra splice loss of 20.8%. The results of this investigation will be useful in the design and optimization of high-power all-fiber YDF lasers and amplifiers.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 26, 2013
Manuscript Accepted: September 30, 2013
Published: November 5, 2013

Virtual Issues
November 13, 2013 Spotlight on Optics

Ting Feng, Micah H. Jenkins, Fengping Yan, and Thomas K. Gaylord, "Arc fusion splicing effects in large-mode-area single-mode ytterbium-doped fibers," Appl. Opt. 52, 7706-7711 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25, 385–388 (2013). [CrossRef]
  2. F. F. Yin, S. G. Yang, H. W. Chen, M. H. Chen, and S. Z. Xie, “Tunable single-longitudinal-mode Ytterbium all fiber laser with saturable-absorber-based auto-tracking filter,” Opt. Commun. 285, 2702–2706 (2012). [CrossRef]
  3. N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012). [CrossRef]
  4. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  5. K. Lyytikainen, S. T. Huntington, A. L. G. Carter, P. McNamara, S. Fleming, J. Abramczyk, I. Kaplin, and G. Schotz, “Dopant diffusion during optical fibre drawing,” Opt. Express 12, 972–977 (2004). [CrossRef]
  6. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 2: fibers,” Appl. Opt. 26, 1175–1182 (1987). [CrossRef]
  7. I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008). [CrossRef]
  8. W. Shin, M. J. Han, U. C. Paek, D. Y. Kim, and K. Oh, “Longitudinal distribution of stress along the splice between dissimilar optical fibers,” in Optical Fiber Communication Conference (OFC), Los Angeles, CA, 23–27 February2004 (Institute of Electrical and Electronics Engineers Inc., 2004), pp. 19–21.
  9. J. Luo, “Modeling dissimilar optical fiber splices with substantial diffusion,” J. Lightwave Technol. 25, 3575–3579 (2007). [CrossRef]
  10. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004). [CrossRef]
  11. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004). [CrossRef]
  12. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers,” Appl. Opt. 38, 1086–1095 (1999). [CrossRef]
  13. Y. Park, T. J. Ahn, Y. H. Kim, W. T. Han, U. C. Paek, and D. Y. Kim, “Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber,” Appl. Opt. 41, 21–26 (2002). [CrossRef]
  14. C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265, 29–32 (2006). [CrossRef]
  15. M. R. Hutsel, R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009). [CrossRef]
  16. N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008). [CrossRef]
  17. M. R. Hutsel and T. K. Gaylord, “Concurrent three-dimensional characterization of the refractive-index and residual-stress distributions in optical fibers,” Appl. Opt. 51, 5442–5452 (2012). [CrossRef]
  18. T. Feng, M. H. Jenkins, F. Yan, and T. K. Gaylord, “Joint residual stress/refractive index characterization of large-mode-area erbium-doped fibers,” J. Lightwave Technol. 31, 2426–2433 (2013). [CrossRef]
  19. nLight corporation, Vancouver, WA 98665 USA. http://www.nlight.net .
  20. S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49, 1054–1059 (2011). [CrossRef]
  21. P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013). [CrossRef]
  22. J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-TDM,” IEEE Photon. Technol. Lett. 8, 236–238 (1996). [CrossRef]
  23. A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005), pp. 115–117.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited