Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling

Not Accessible

Your library or personal account may give you access

Abstract

In resonator micro-optic gyros (RMOGs), the interference between the backreflection light beam of one pathway and the signal light beam of the other pathway deteriorates the gyro output waveforms, resulting in severe reduction in the gyro’s accuracy. In this paper, an integer period sampling (IPS) method is introduced to minimize the sampling error caused by backreflection in RMOG for the first time to our knowledge. The experimental results show that both the bias repeatability and the short-term bias stability become better when the IPS condition is satisfied. A bias stability of 0.41°/s over one hour with an integration time of 10 s has been realized in a RMOG that employs a silica waveguide ring resonator.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology

Lishuang Feng, Ming Lei, Huilan Liu, Yinzhou Zhi, and Junjie Wang
Appl. Opt. 52(8) 1668-1675 (2013)

Current modulation technique used in resonator micro-optic gyro

Ming Lei, Lishuang Feng, Yinzhou Zhi, Huilan Liu, Junjie Wang, Xiaoyuan Ren, and Ni Su
Appl. Opt. 52(2) 307-313 (2013)

Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique

Hui Mao, Huilian Ma, and Zhonghe Jin
Opt. Express 19(5) 4632-4643 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved