OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 32 — Nov. 10, 2013
  • pp: 7712–7717

Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling

Junjie Wang, Lishuang Feng, Yinzhou Zhi, Huilan Liu, Wei Wang, and Ming Lei  »View Author Affiliations


Applied Optics, Vol. 52, Issue 32, pp. 7712-7717 (2013)
http://dx.doi.org/10.1364/AO.52.007712


View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In resonator micro-optic gyros (RMOGs), the interference between the backreflection light beam of one pathway and the signal light beam of the other pathway deteriorates the gyro output waveforms, resulting in severe reduction in the gyro’s accuracy. In this paper, an integer period sampling (IPS) method is introduced to minimize the sampling error caused by backreflection in RMOG for the first time to our knowledge. The experimental results show that both the bias repeatability and the short-term bias stability become better when the IPS condition is satisfied. A bias stability of 0.41°/s over one hour with an integration time of 10 s has been realized in a RMOG that employs a silica waveguide ring resonator.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2800) Fiber optics and optical communications : Gyroscopes
(130.6010) Integrated optics : Sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 6, 2013
Revised Manuscript: October 8, 2013
Manuscript Accepted: October 9, 2013
Published: November 5, 2013

Citation
Junjie Wang, Lishuang Feng, Yinzhou Zhi, Huilan Liu, Wei Wang, and Ming Lei, "Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling," Appl. Opt. 52, 7712-7717 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-32-7712


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001). [CrossRef]
  2. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Aremenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010).
  3. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).
  4. C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009). [CrossRef]
  5. Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008). [CrossRef]
  6. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011). [CrossRef]
  7. H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013). [CrossRef]
  8. H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011). [CrossRef]
  9. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J., 4, 1844–1854 (2012). [CrossRef]
  10. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” in 14th International Conference on Transparent Optical Networks (IEEE, 2012), paper Th.A4.5.
  11. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013). [CrossRef]
  12. F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Theoretical investigation of InP buried ring resonators for new angular velocity sensors,” Opt. Eng. 52, 024601 (2013). [CrossRef]
  13. C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Eur. Opt. Soc. Rapid Pub. 8, 13050 (2013).
  14. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23, 3916–3924 (1984). [CrossRef]
  15. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25, 4448–4451 (1986). [CrossRef]
  16. K. Hotate and K. Tabe, “Drift of an optical fiber gyroscope caused by the Faraday effect: influence of the earth’s magnetic field,” Appl. Opt. 25, 1086–1092 (1986). [CrossRef]
  17. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Appl. Opt. 25, 2606–2612 (1986). [CrossRef]
  18. F. Zarinetchi and S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11, 401–403 (1986). [CrossRef]
  19. T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
  20. M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990). [CrossRef]
  21. X. Zhang and K. Zhou, “Analysis on two-reflection-dots model outside resonator of R-MOG,” Chin. J. Sens. Actuat. 22, 811–815 (2009).
  22. http://en.m.wikipedia.org/wiki/Backscatter .
  23. H. J. Arditty, H. J. Shaw, M. Chodorow, and R. K. Kompfner, “Re-entrant fiber-optic approach to rotation sensing,” Proc. SPIE 157, 138–148 (1978).
  24. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech, 2002), pp. 61–63 (in Chinese).
  25. M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Publishing House of Electronics Industry, 2009), pp. 239–242 (in Chinese).
  26. L. Feng, M. Lei, H. Liu, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013). [CrossRef]
  27. M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Publishing House of Electronics Industry, 2009), pp. 299–304 (in Chinese).
  28. H. Ma, Y. Chen, M. Li, and Z. Jin, “Transient response of a resonator fiber optic gyro with triangular wave phase modulation,” Appl. Opt. 49, 6253–6263 (2010). [CrossRef]
  29. L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011). [CrossRef]
  30. L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by linear phase modulation method used in resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012). [CrossRef]
  31. R. E. Meyer, S. Ezekiel, and D. W. Stowe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8, 644–646 (1983). [CrossRef]
  32. X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited