OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 32 — Nov. 10, 2013
  • pp: 7769–7777

Comparative analysis of numerical methods for the mode analysis of laser beams

Robert Brüning, Philipp Gelszinnis, Christian Schulze, Daniel Flamm, and Michael Duparré  »View Author Affiliations

Applied Optics, Vol. 52, Issue 32, pp. 7769-7777 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a comparative study of four numerical methods to detect the mode content of a laser beam from, at most, two intensity images. The techniques are compared regarding temporal effort, stability, and accuracy, using the example of three multimode optical fibers that differ in the number of supported modes.

© 2013 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(060.2270) Fiber optics and optical communications : Fiber characterization
(100.5070) Image processing : Phase retrieval
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 23, 2013
Revised Manuscript: October 10, 2013
Manuscript Accepted: October 11, 2013
Published: November 8, 2013

Robert Brüning, Philipp Gelszinnis, Christian Schulze, Daniel Flamm, and Michael Duparré, "Comparative analysis of numerical methods for the mode analysis of laser beams," Appl. Opt. 52, 7769-7777 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K. Steinhoff, G. A. Tyler, A. Wilner, and M. J. Padgett, “Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states,” New J. Phys. 15, 013024 (2013). [CrossRef]
  2. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013). [CrossRef]
  3. D. Flamm, C. Schulze, R. Brüning, O. A. Schmidt, T. Kaiser, S. Schröter, and M. Duparré, “Fast M2 measurement for fiber beams based on modal analysis,” Appl. Opt. 51, 987–993 (2012). [CrossRef]
  4. C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, and M. Duparré, “Wavefront reconstruction by modal decomposition,” Opt. Express 20, 19714–19725 (2012). [CrossRef]
  5. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36, 689–691 (2011). [CrossRef]
  6. C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, “Mode resolved bend loss in few-mode optical fibers,” Opt. Express 21, 3170–3181 (2013). [CrossRef]
  7. D. Flamm, K.-C. Hou, P. Gelszinnis, C. Schulze, S. Schröter, and M. Duparré, “Modal characterization of fiber-to-fiber coupling processes,” Opt. Lett. 38, 2128–2130 (2013). [CrossRef]
  8. F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “Non-hexagonal large-pitch fibers for enhanced mode discrimination,” Opt. Express 19, 12081–12086 (2011). [CrossRef]
  9. S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008). [CrossRef]
  10. N. Andermahr, T. Theeg, and C. Fallnich, “Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers,” Appl. Phys. B 91, 353–357 (2008). [CrossRef]
  11. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008). [CrossRef]
  12. D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (c2) imaging of fiber and waveguide modes,” Opt. Express 19, 13008–13019 (2011). [CrossRef]
  13. J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19, 12434–12439 (2011). [CrossRef]
  14. F. Stutzki, C. Jauregui, C. Voigtlaender, J. U. Thomas, S. Nolte, J. Limpert, and A. Tuennermann, “Real-time monitoring of the modal content of monolithic large-mode-area fiber lasers,” in Optical Fiber Communication Conference (Optical Society of America, 2010).
  15. V. A. Soifer and M. Golub, Laser Beam Mode Selection by Computer Generated Holograms (CRC Press, 1994).
  16. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17, 9347–9356 (2009). [CrossRef]
  17. C. Schulze, A. Dudley, D. Flamm, M. Duparr, and A. Forbes, “Measurement of the orbital angular momentum density of light by modal decomposition,” New J. Phys. 15, 073025 (2013). [CrossRef]
  18. D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt. 51, 450–456 (2012). [CrossRef]
  19. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–250 (1972).
  20. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  21. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94, 143902 (2005). [CrossRef]
  22. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36, 4572–4574 (2011). [CrossRef]
  23. A. Cutolo, T. Isernia, I. Izzo, R. Pierri, and L. Zeni, “Transverse mode analysis of a laser beam by near-and far-field intensity measurements,” Appl. Opt. 34, 7974–7978 (1995). [CrossRef]
  24. M. Skorobogatiy, C. Anastassiou, S. Johnson, O. Weisberg, T. Engeness, S. Jacobs, R. Ahmad, and Y. Fink, “Quantitative characterization of higher-order mode converters in weakly multimoded fibers,” Opt. Express 11, 2838–2847 (2003). [CrossRef]
  25. H. Lü, P. Zhou, X. Wang, and Z. Jiang, “Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm,” Appl. Opt. 52, 2905–2908 (2013). [CrossRef]
  26. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1996).
  27. J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” Am. Stat. 42, 59–66 (1988).
  28. C. Borgentun, J. Bengtsson, and A. Larsson, “Full characterization of a high-power semiconductor disk laser beam with simultaneous capture of optimally sized focus and farfield,” Appl. Opt. 50, 1640–1649 (2011). [CrossRef]
  29. A. Cutolo, A. Esposito, T. Isernia, R. Pierri, and L. Zeni, “Characterization of the transverse modes in a laser beam: analysis and application to a q-switched Nd:YAG laser,” Appl. Opt. 31, 2722–2733 (1992). [CrossRef]
  30. T. Isernia, G. Leone, and R. Pierri, “Phaseless near field techniques: uniqueness conditions and attainment of the solution,” J. Electromagn. Wave Appl. 8, 889–908 (1994).
  31. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007). [CrossRef]
  32. ISO, “ISO 11146-1:2005 Test methods for laser beam widths, divergence angles and beam propagation ratios part 1: Stigmatic and simple astigmatic beams,” (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3469 KB)     
» Media 2: AVI (1766 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited