OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 32 — Nov. 10, 2013
  • pp: 7806–7811

Detection of single gold nanoparticles using spatial modulation spectroscopy implemented with a galvo-scanning mirror system

Mary Sajini Devadas, Zhongming Li, Todd A. Major, Shun Shang Lo, Nicolas Havard, Kuai Yu, Paul Johns, and Gregory V. Hartland  »View Author Affiliations


Applied Optics, Vol. 52, Issue 32, pp. 7806-7811 (2013)
http://dx.doi.org/10.1364/AO.52.007806


View Full Text Article

Enhanced HTML    Acrobat PDF (500 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical extinction of single nanoparticles can be sensitively detected by spatial modulation spectroscopy (SMS), where the particle is moved in and out of a tightly focused laser beam with a piezo-device. Here we show that high sensitivity can be obtained by modulating the beam with a galvo-mirror system, rather than by moving the sample. This work demonstrates an inexpensive method for making a SMS microscope, and shows how an existing laser scanning microscope can be adapted for SMS measurements. The galvo-mirror technique also allows SMS measurements to be performed in a liquid, which is difficult to do with piezo-modulation.

© 2013 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(300.1030) Spectroscopy : Absorption
(160.4236) Materials : Nanomaterials

ToC Category:
Microscopy

History
Original Manuscript: August 12, 2013
Revised Manuscript: October 16, 2013
Manuscript Accepted: October 17, 2013
Published: November 8, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Mary Sajini Devadas, Zhongming Li, Todd A. Major, Shun Shang Lo, Nicolas Havard, Kuai Yu, Paul Johns, and Gregory V. Hartland, "Detection of single gold nanoparticles using spatial modulation spectroscopy implemented with a galvo-scanning mirror system," Appl. Opt. 52, 7806-7811 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-32-7806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. P. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004). [CrossRef]
  2. A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, and M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1, 343–350 (2010). [CrossRef]
  3. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330, 353–356 (2010). [CrossRef]
  4. P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett. 1, 3323–3327 (2010). [CrossRef]
  5. M. Celebrano, P. Kukura, A. Renn, and V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011). [CrossRef]
  6. S. S. Chong, W. Min, and X. S. Xie, “Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature,” J. Phys. Chem. Lett. 1, 3316–3322 (2010). [CrossRef]
  7. M. Selmke, M. Braun, and F. Cichos, “Photothermal single-particle microscopy: detection of a nanolens,” ACS Nano 6, 2741–2749 (2012). [CrossRef]
  8. W. S. Chang and S. Link, “Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals,” J. Phys. Chem. Lett. 3, 1393–1399 (2012). [CrossRef]
  9. R. Radunz, D. Rings, K. Kroy, and F. Cichos, “Hot Brownian particles and photothermal correlation spectroscopy,” J. Phys. Chem. A 113, 1674–1677 (2009). [CrossRef]
  10. P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009). [CrossRef]
  11. M. Selmke, M. Braun, and F. Cichos, “Gaussian beam photothermal single particle microscopy,” J. Opt. Soc. Am. A 29, 2237–2241 (2012). [CrossRef]
  12. P. Berto, E. B. Urena, P. Bon, R. Quidant, H. Rigneault, and G. Baffou, “Quantitative absorption spectroscopy of nano-objects,” Phys. Rev. B 86, 165417 (2012). [CrossRef]
  13. A. Arbouet, D. Christofilos, N. Del Fatti, F. Vallée, J. R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, “Direct measurement of the single-metal-cluster optical absorption,” Phys. Rev. Lett. 93, 127401 (2004). [CrossRef]
  14. V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, “Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods,” Nano Lett. 13, 2234–2240 (2013). [CrossRef]
  15. P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lerme, J. L. Vialle, M. Broyer, and M. Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Rev. Sci. Instrum. 81, 043101 (2010). [CrossRef]
  16. A. Lombardi, M. Loumaigne, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, M. Spuch-Calvar, J. Burgin, J. Majimel, and M. Treguer-Delapierre, “Surface plasmon resonance properties of single elongated nanoobjects: gold nanobipyramids and nanorods,” Langmuir 28, 9027–9033 (2012). [CrossRef]
  17. J. Giblin, F. Vietmeyer, M. P. McDonald, and M. Kuno, “Single nanowire extinction spectroscopy,” Nano Lett. 11, 3307–3311 (2011). [CrossRef]
  18. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5, 515–518 (2005). [CrossRef]
  19. N. Fairbairn, R. A. Light, R. Carter, R. Fernandes, A. G. Kanaras, T. J. Elliott, M. G. Somekh, M. C. Pitter, and O. L. Muskens, “Spatial modulation microscopy for real-time imaging of plasmonic nanoparticles and cells,” Opt. Lett. 37, 3015–3017 (2012). [CrossRef]
  20. L. Oudjedi, A. N. G. Parra-Vasquez, A. G. Godin, L. Cognet, and B. Lounis, “Metrological investigation of the (6,5) carbon nanotube absorption cross section,” J. Phys. Chem. Lett. 4, 1460–1464 (2013). [CrossRef]
  21. G. Frens, “Controlled nucleation for regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci. 241, 20–22 (1973). [CrossRef]
  22. O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, “Single metal nanoparticle absorption spectroscopy and optical characterization,” Appl. Phys. Lett. 88, 063109 (2006). [CrossRef]
  23. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy,” Opt. Express 13, 2668–2677 (2005). [CrossRef]
  24. A. Tcherniak, S. Dominguez-Medina, W. S. Chang, P. Swanglap, L. S. Slaughter, C. F. Landes, and S. Link, “One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods,” J. Phys. Chem. C 115, 15938–15949 (2011). [CrossRef]
  25. M. Loumaigne, P. Vasanthakumar, A. Lombardi, A. Richard, and A. Debarre, “One-photon excited luminescence of single gold particles diffusing in solution under pulsed illumination,” Phys. Chem. Chem. Phys. 15, 4154–4162 (2013). [CrossRef]
  26. H. Cang, C. M. Wong, S. Xu, A. H. Rizvi, and H. Yang, “Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts,” Appl. Phys. Lett. 88, 223901 (2006). [CrossRef]
  27. C. S. Xu, H. Cang, D. Montiel, and H. Yang, “Rapid and quantitative sizing of nanoparticles using three-dimensional single-particle tracking,” J. Phys. Chem. C 111, 32–35 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited