OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 32 — Nov. 10, 2013
  • pp: 7826–7831

Effect of aberrations in a holographic system on reflecting volume Bragg gratings

Marc SeGall, Daniel Ott, Ivan Divliansky, and Leonid B. Glebov  »View Author Affiliations

Applied Optics, Vol. 52, Issue 32, pp. 7826-7831 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (485 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of aberrations in the recording beams of a holographic setup is discussed regarding the deterioration of properties of a reflecting volume Bragg grating. Imperfect recording beams result in a spatially varying grating vector, which causes broadening, asymmetry, and washed out side lobes in the reflection spectrum as well as a corresponding reduction in peak diffraction efficiency. These effects are more significant for gratings with narrower spectral widths.

© 2013 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.2880) Holography : Holographic interferometry
(220.1010) Optical design and fabrication : Aberrations (global)

ToC Category:

Original Manuscript: August 9, 2013
Revised Manuscript: October 10, 2013
Manuscript Accepted: October 14, 2013
Published: November 8, 2013

Marc SeGall, Daniel Ott, Ivan Divliansky, and Leonid B. Glebov, "Effect of aberrations in a holographic system on reflecting volume Bragg gratings," Appl. Opt. 52, 7826-7831 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, “Efficient power scaling of laser radiation by spectral beam combining,” Opt. Lett. 33, 384–386 (2008). [CrossRef]
  2. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009). [CrossRef]
  3. Z. Sun, Q. Li, H. Lei, Y. Hui, and M. Jiang, “Sub-nanosecond pulse, single longitudinal mode Q-switched Nd:YVO4 laser controlled by reflecting Bragg gratings,” Opt. Laser Technol. 48, 475–479 (2013). [CrossRef]
  4. D. Ott, V. Rotar, J. Lumeau, S. Mokhov, I. Divliansky, A. Ryasnyanskiy, N. Vorobiev, V. Smirnov, C. Spiegelberg, and L. Glebov, “Longitudinal mode selection in laser cavity by moiré volume Bragg grating,” Proc. SPIE 8236, 823621 (2012). [CrossRef]
  5. J. Lumeau, L. B. Glebov, and V. Smirnov, “Tunable narrowband filter based on a combination of Fabry–Perot etalon and volume Bragg grating,” Opt. Lett. 31, 2417–2419 (2006). [CrossRef]
  6. V. Smirnov, J. Lumeau, S. Mokhov, B. Ya. Zeldovich, and L. B. Glebov, “Ultranarrow bandwidth moiré reflecting Bragg gratings recorded in photo-thermo-refractive glass,” Opt. Lett. 35, 592–594 (2010). [CrossRef]
  7. J. Lumeau, C. Koc, O. Mokhun, V. Smirnov, M. Lequime, and L. B. Glebov, “Single resonance monolithic Fabry–Perot filters formed by volume Bragg gratings and multilayer dielectric mirrors,” Opt. Lett. 36, 1773–1775 (2011). [CrossRef]
  8. T. Hieta, M. Vainio, C. Moser, and E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282, 3119–3123 (2009). [CrossRef]
  9. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32, 2996–2998 (2007). [CrossRef]
  10. N. Chen, “Aberrations of volume holographic grating,” Opt. Lett. 10, 472–474 (1985). [CrossRef]
  11. M. Ma, X. Wang, and F. Wang, “Aberration measurement of projection optics in lithographic tools based on two-beam interference theory,” Appl. Opt. 45, 8200–8208 (2006). [CrossRef]
  12. R. S. Sirohi, Optical Methods of Measurement: Wholefield Techniques, 2nd ed. (CRC Press, 2009).
  13. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  14. J. Wyant and J. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, R. Shannon and J. Wyant, eds. (Academic, 1992), Vol. XI, pp. 1–53.
  15. V. N. Mahajan, “Zernike polynomials and wavefront fitting,” in Optical Shop Testing, D. Malacara, ed., 3rd ed. (Wiley, 2007), pp. 498–546.
  16. G. Dai, Wavefront Optics for Vision Correction (SPIE, 2008).
  17. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474–3478 (1987). [CrossRef]
  18. H. Kogelnik, “Coupled wave theory for thick volume holograms,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  19. L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J. Holography Speckle 5, 1–8 (2008).
  20. R. R. A. Syms, Practical Volume Holography, Oxford Engineering Science Series (Clarendon, 1990), p. 24.
  21. M. SeGall, D. Ott, I. Divliansky, and L. B. Glebov, “The effect of aberrated recording beams on reflecting Bragg gratings,” Proc. SPIE 8644, 864408 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited