OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 7963–7980

Results of aperture area comparisons for exo-atmospheric total solar irradiance measurements

B. Carol Johnson, Maritoni Litorja, Joel B. Fowler, Eric L. Shirley, Robert A. Barnes, and James J. Butler  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 7963-7980 (2013)
http://dx.doi.org/10.1364/AO.52.007963


View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Exo-atmospheric solar irradiance measurements made by the solar irradiance community since 1978 have incorporated limiting apertures with diameters measured by a number of metrology laboratories using a variety of techniques. Knowledge of the aperture area is a critical component in the conversion of radiant flux measurements to solar irradiance. A National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) sponsored international comparison of aperture area measurements of limiting apertures provided by solar irradiance researchers was performed, the effort being executed by the National Institute of Standards and Technology (NIST) in coordination with the EOS Project Science Office. Apertures that had institutional heritage with historical solar irradiance measurements were measured using the absolute aperture measurement facility at NIST. The measurement technique employed noncontact video microscopy using high-accuracy translation stages. We have quantified the differences between the participating institutions’ aperture area measurements and find no evidence to support the hypothesis that preflight aperture area measurements were the root cause of discrepancies in long-term total solar irradiance satellite measurements. Another result is the assessment of uncertainties assigned to methods used by participants. We find that uncertainties assigned to a participant’s values may be underestimated.

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 10, 2013
Manuscript Accepted: August 18, 2013
Published: November 13, 2013

Citation
B. Carol Johnson, Maritoni Litorja, Joel B. Fowler, Eric L. Shirley, Robert A. Barnes, and James J. Butler, "Results of aperture area comparisons for exo-atmospheric total solar irradiance measurements," Appl. Opt. 52, 7963-7980 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-7963


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Harder, J. M. Fontenla, P. Pilewskie, E. C. Richard, and T. N. Woods, “Trends in solar spectral irradiance variability in the visible and infrared,” Geophys. Res. Lett. 36, L07801 (2009). [CrossRef]
  2. J. L. Lean, “The sun’s variable radiation and its relevance for Earth,” Annu. Rev. Astron. Astrophys. 35, 33–67 (1997). [CrossRef]
  3. D. H. Rind, “The sun’s role in climate variations,” Science 296, 673–677 (2002). [CrossRef]
  4. D. H. Rind, J. Lean, L. Lerner, P. Lonergan, and A. Leboissitier, “Exploring the stratospheric/tropospheric response to solar forcing,” J. Geophys. Res. 113, D24103 (2008). [CrossRef]
  5. J. L. Lean and D. H. Rind, “How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006,” Geophys. Res. Lett. 35, L18701 (2008). [CrossRef]
  6. J. L. Lean and D. H. Rind, “How will Earth’s surface temperature change in future decades?” Geophys. Res. Lett. 36, L15708 (2009). [CrossRef]
  7. G. B. Ohring, Achieving Satellite Instrument Calibration for Climate Change (ASIC3), Center for Satellite Applications and Research (NESDIS/NOAA, U.S. Dept. of Commerce, 2008).
  8. G. Kopp, “Total Solar Irradiance Database” (2013), retrieved http://spot.colorado.edu/~koppg/TSI/TSI.jpg .
  9. F. Hengstberger, Absolute Radiometry: Electrically Calibrated Thermal Detectors of Optical Radiation (Academic, 1989).
  10. R. Goebel, M. Stock, and R. Köhler, “Report on the international comparison of cryogenic radiometers based on transfer detectors, , September 2000” (Paris, France, 2000).
  11. G. Kopp, K. Heuerman, D. Harber, and V. Drake, “The TSI radiometer facility—absolute calibrations for total solar irradiance instruments,” Proc. SPIE 6677, 667709 (2007). [CrossRef]
  12. C. Fröhlich and J. L. Lean, “The sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976,” Geophys. Res. Lett. 25, 4377–4380 (1998). [CrossRef]
  13. J. J. Butler, B. C. Johnson, J. P. Rice, E. L. Shirley, and R. A. Barnes, “Sources of differences in on-orbit total solar irradiance measurements,” J. Res. Natl. Inst. Stand. Technol. 113, 187–203 (2008). [CrossRef]
  14. G. M. Lawrence, G. Kopp, G. Rottman, J. Harder, T. Woods, and H. Loui, “Calibration of the total irradiance monitor,” Metrologia 40, S78–S80 (2003). [CrossRef]
  15. J. M. Houston and J. P. Rice, “NIST reference cryogenic radiometer designed for versatile performance,” Metrologia 43, S31–S35 (2006). [CrossRef]
  16. G. Kopp and J. L. Lean, “A new, lower value of total solar irradiance: evidence and climate significance,” Geophys. Res. Lett. 38, L01706 (2011). [CrossRef]
  17. J. J. Butler, “Calibration workshop for the total irradiance monitor (TIM) instrument on the Earth Observing System’s (EOS) solar radiation and climate experiment,” The Earth Observer 12(3), 22–25 (2000).
  18. J. J. Butler and B. C. Johnson, “Organization and implementation of calibration in the EOS project—part 1,” The Earth Observer 8(1), 22–27 (1996).
  19. J. J. Butler and B. C. Johnson, “Calibration in the EOS project—part 2: implementation,” The Earth Observer 8(2), 26–31 (1996).
  20. J. J. Butler and R. A. Barnes, “The use of transfer radiometers in validating the visible through shortwave infrared calibrations of radiance sources used by instruments in NASA’s Earth Observing System,” Metrologia 40, S70–S77 (2003). [CrossRef]
  21. J. J. Butler, B. C. Johnson, J. P. Rice, S. W. Brown, and R. A. Barnes, “Validation of radiometric standards for laboratory calibration of reflected-solar Earth observing satellite instruments,” Proc. SPIE 6677, 667707 (2007). [CrossRef]
  22. E. A. Early, P. Y. Barnes, B. C. Johnson, J. J. Butler, C. J. Bruegge, S. F. Biggar, P. R. Spyak, and M. M. Pavlov, “Bidirectional reflectance round-robin in support of the Earth observing system program,” J. Atmos. Ocean. Technol. 17, 1077–1091 (2000). [CrossRef]
  23. J. B. Fowler, National Institute of Standards and Technology (personal communication, 2000).
  24. B. C. Johnson, M. Litorja, and J. J. Butler, “Preliminary results of aperture area comparison for exo-atmospheric solar irradiance,” Proc. SPIE 5151, 454–462 (2003). [CrossRef]
  25. T. M. Goodman, J. E. Martin, B. D. Shipp, and N. P. Turner, “The manufacture and measurement of precision apertures,” in New Developments and Applications in Optical Radiometry, N. P. Fox and D. H. Netttleton, eds., Vol. 92 of Institute of Physics Conference Series (Institute of Physics, 1989), pp. 121–128.
  26. Roundness, a measure of radial deviations, is defined as the difference in radii of the two coplanar concentric circles that just include the profile of the surface.
  27. J. E. Martin, N. P. Fox, N. J. Harrison, B. Shipp, and M. Anklin, “Determination and comparisons of aperture areas using geometric and radiometric techniques,” Metrologia 35, 461–464 (1998). [CrossRef]
  28. J. B. Fowler and G. Dezsi, “High-accuracy measurement of aperture area relative to standard known aperture,” J. Res. NIST 100, 277–283 (1995).
  29. J. Hartmann, “Advanced comparator method for measuring ultra-small aperture areas,” Meas. Sci. Technol. 12, 1678–1682 (2001). [CrossRef]
  30. J. Fischer and M. Stock, “A noncontact measurement of radiometric apertures with an optical microtopography sensor,” Meas. Sci. Technol. 3, 693–698 (1992). [CrossRef]
  31. D. Crommelynck and S. Dewitte, “Metrology of total solar irradiance monitoring,” Adv. Space Res. 24, 195–204 (1999). [CrossRef]
  32. S. Mekaoui, S. Dewitte, D. Crommelynck, A. Chevalier, C. Conscience, and A. Joukoff, “Absolute accuracy and repeatability for the RMIB radiometers for TSI measurements,” Sol. Phys. 224, 237–246 (2004). [CrossRef]
  33. D. Crommelynck, “The observation of the solar irradiance and its variations, challenging space metrology,” Sol. Phys. 74, 509–519 (1981). [CrossRef]
  34. D. Crommelynck, “Fundamentals of absolute pyroheliometry and objective characterization,” in Langley Research Center Earth Radiation Science Seminars, NASA CP 2239, J. B. Hall, ed. (NASA LaRC, 1982), pp. 53–88.
  35. S. Dewitte, A. Joukoff, D. Crommelynck, R. B. Lee, R. Helizon, and R. S. Wilson, “Contribution of the Solar Constant (SOLCON) program to the long-term total solar irradiance observations,” J. Geophys. Res. 106, 15759–15765 (2001). [CrossRef]
  36. D. Crommelynck, R. W. Brusa, and V. Domingo, “Results of the solar constant experiment on board Spacelab 1,” Sol. Phys. 107, 1–9 (1986). [CrossRef]
  37. D. Crommelynck and V. Domingo, “Solar irradiance observations,” Science 225, 180–181 (1984). [CrossRef]
  38. D. Crommelynck, V. Domingo, B. R. Barkstrom, R. B. Lee, J. Donaldson, U. Telljohann, L. Warren, and A. Fichot, “Preliminary results of solar constant observations with the SOLCON experiment on ATLAS-1,” Adv. Space Res. 14, 253–262 (1994). [CrossRef]
  39. D. Crommelynck, A. Fichot, R. B. Lee, and J. Romero, “First realization of the space absolute radiometric reference (SARR) during the ATLAS 2 flight period,” Adv. Space Res. 16, 17–23 (1995). [CrossRef]
  40. D. Crommelynck, A. Fichot, V. Domingo, and R. B. Lee, “SOLCON solar constant observations from the ATLAS missions,” Geophys. Res. Lett. 23, 2293–2295 (1996). [CrossRef]
  41. D. Crommelynck, V. Domingo, A. Fichot, C. Fröhlich, B. Penelle, J. Romero, and C. Wehrli, “Preliminary results from the SOVA experiment on board the European Retrievable Carrier (EURECA),” Metrologia 30, 375–379 (1993). [CrossRef]
  42. D. Crommelynck, V. Domingo, A. Fichot, and R. B. Lee, “Total solar irradiance observations from the EURECA and ATLAS missions,” in The Sun as a Variable Star: Solar and Stellar Irradiance Variations, J. M. Pap, C. Fröhlich, H. S. Hudson, and S. K. Solanski, eds. (Cambridge University, 1994), pp. 63–69.
  43. S. Mekaoui, S. Dewitte, C. Conscience, and A. Chevalier, “Total solar irradiance absolute level from DIARAD/SOVIM on the international space station,” Adv. Space Res. 45, 1393–1406 (2010). [CrossRef]
  44. G. Schmidtke, C. Fröhlich, and G. Thuillier, “ISS-SOLAR: total (TSI) and spectral (SSI) irradiance measurements,” Adv. Space Res. 37, 255–264 (2006). [CrossRef]
  45. S. Dewitte, D. Crommelynck, and A. Joukoff, “Total solar irradiance observations from DIARAD/VIRGO,” J. Geophys. Res. 109, A02102 (2004). [CrossRef]
  46. C. Conscience, M. Meftah, A. Chevalier, S. Dewitte, and D. Crommelynck, “The space instrument SOVAP of the PICARD mission,” Proc. SPIE 8146, 814613 (2011). [CrossRef]
  47. G. Thuillier, S. Dewitte, and W. Schmutz, “Simultaneous measurement of the total solar irradiance and solar diameter by the PICARD mission,” Adv. Space Res. 38, 1792–1806 (2006). [CrossRef]
  48. L. Damé, D. Cugnet, M. Hersé, D. Crommelynck, S. Dewitte, A. Joukoff, I. Ruedi, W. Schmutz, C. Wehrli, C. Delmas, F. Laclare, and J.-P. Rozelot, “PICARD: Solar diameter, irradiance and climate,” in The Solar Cycle and Terrestrial Climate, Proceedings of the 1st Solar and Space Weather Euroconference, A. Wilson, ed. (European Space Agency, 2000).
  49. L. Damé, M. Hersé, G. Thuillier, T. Appourchaux, D. Crommelynck, S. Dewitte, A. Joukoff, C. Fröhlich, F. Laclare, C. Delmas, and P. Boumier, “PICARD: simultaneous measurements of the solar diameter, differential rotation, solar constant and their variations,” Adv. Space Res. 24, 205–214 (1999). [CrossRef]
  50. D. Crommelynck, “Factors limiting the accuracy of absolute radiometry,” in New Developments and Applications in Optical Radiometry, N. P. Fox and D. H. Nettleton, eds., Vol. 92 of Institute of Physics Conference Series (Institute of Physics, 1989), pp. 19–25.
  51. R. W. Brusa and C. Fröhlich, “Absolute radiometers (PMO6) and their experimental characterization,” Appl. Opt. 25, 4173–4180 (1986). [CrossRef]
  52. C. Fröhlich, “History of solar radiometry and the world radiometric reference,” Metrologia 28, 111–115 (1991). [CrossRef]
  53. C. Fröhlich, R. Philipona, J. Romero, and C. Wehrli, “Radiometry at the Physikalisch–Meteorologisches Observatorium Davos World Radiation Centre,” Opt. Eng. 34, 2757–2766 (1995). [CrossRef]
  54. C. Fröhlich and R. W. Brusa, “Solar radiation and its variation over time,” Sol. Phys. 74, 209–215 (1981). [CrossRef]
  55. R. C. Willson, H. S. Hudson, C. Fröhlich, and R. W. Brusa, “Long-term downward trend in total solar irradiance,” Science 234, 1114–1117 (1986). [CrossRef]
  56. J. Romero, C. Fröhlich, and C. Wehrli, “Solar total irradiance variability measured by SOVA-2 on board EURECA,” Adv. Space Res. 16, 29–32 (1995). [CrossRef]
  57. J. Romero, C. Wehrli, and C. Fröhlich, “Solar total irradiance variability from SOVA 2 on board EURECA,” Sol. Phys. 152, 23–29 (1994). [CrossRef]
  58. C. Fröhlich, “Solar irradiance variability since 1978, revision of the PMOD composite during solar cycle 21,” Space Sci. Rev. 125, 53–65 (2006). [CrossRef]
  59. C. Fröhlich and W. Finsterle, “Total solar irradiance from VIRGO on SOHO,” in The Solar Cycle and Terrestrial Climate, Proceedings of the 1st Solar and Space Weather Euroconference, ESA SP-463, A. Wilson, ed. (European Space Agency, 2000), pp. 665–670.
  60. C. Fröhlich, J. Romero, H. Roth, C. Wehrli, B. N. Andersen, T. Appourchaux, V. Domingo, U. Telljohann, G. Berthomieu, P. Delache, J. Provost, T. Toutain, D. Crommelynck, A. Chevalier, A. Fichot, W. Däppen, D. Gough, T. Hoeksema, A. Jiménez, M. F. Gómez, J. M. Herreros, T. R. Cortés, A. R. Jones, J. M. Pap, and R. C. Willson, “VIRGO: Experiment for helioseismology and solar irradiance monitoring,” Sol. Phys. 162, 101–128 (1995). [CrossRef]
  61. G. Thuillier, C. Fröhlich, and G. Schmidtke, “Spectral and total solar irradiance measurements on board the international space station,” in Proceedings of the 2nd European Symposium on the Utilisation of the International Space Station, ESA SP-433 (European Space Agency, 1999), pp. 605–611.
  62. M. Anklin, C. Wehrli, C. Fröhlich, and F. Pepe, “Total solar and spectral irradiance measured in France during a stratospheric balloon flight,” in Fourteenth ESA Symposium on European Rocket and Balloon Programs and Related Research, ESA SP-437, B. Kaldeich-Schürmann, ed. (European Space Agency, 1999), pp. 537–540.
  63. J. E. Martin, N. P. Fox, and P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985). [CrossRef]
  64. J. Romero, N. P. Fox, and C. Fröhlich, “First comparison of the solar and an SI radiometric scale,” Metrologia 28, 125–128 (1991). [CrossRef]
  65. J. Romero, N. P. Fox, and C. Fröhlich, “Improved comparison of the world radiometric reference and the SI radiometric scale,” Metrologia 32, 523–524 (1995/96). [CrossRef]
  66. W. Finsterle, P. Blattner, S. Moebus, I. Rüedi, C. Wehrli, M. White, and W. Schmutz, “Third comparison of the world radiometric reference and the SI radiometric scale,” Metrologia 45, 377–381 (2008). [CrossRef]
  67. H. Jacobowitz, H. V. Soule, H. L. Kyle, and F. House, and Team, “Earth radiation budget (ERB) experiment: an overview,” J. Geophys. Res. 89, 5021–5038 (1984). [CrossRef]
  68. H. Jacobowitz, L. L. Stowe, and J. R. Hickey, “The Earth radiation budget (ERB) experiment,” in The Nimbus 7 Users’ Guide, C. R. Madrid, ed. (NASA GSFC, 1978), pp. 33–70.
  69. J. R. Hickey and A. R. Karoli, “Radiometric calibrations for the Earth radiation budget experiment,” Appl. Opt. 13, 523–533 (1974). [CrossRef]
  70. J. R. Hickey, B. M. Alton, H. L. Kyle, and D. Hoyt, “Total solar irradiance measurements by ERB/Nimbus 7—a review of nine years,” Space Sci. Rev. 48, 321–342 (1988). [CrossRef]
  71. C. Fröhlich, “Long-term behavior of space radiometers,” Metrologia 40, S60–S65 (2003). [CrossRef]
  72. R. B. Lee and R. S. Wilson, “Validation of spacecraft active cavity radiometer total solar irradiance (TSI): long-term measurement trends using proxy TSI least squares analyses,” Proc. SPIE 5570, 352–362 (2004). [CrossRef]
  73. R. C. Willson, “Measurements of solar total irradiance and its variability,” Space Sci. Rev. 38, 203–242 (1984). [CrossRef]
  74. B. R. Barkstrom, “The Earth radiation budget experiment (ERBE),” Bull. Am. Meteorol. Soc. 65, 1170–1185 (1984). [CrossRef]
  75. B. R. Barkstrom and G. L. Smith, “The Earth radiation budget experiment: science and implementation,” Rev. Geophys. 24, 379–390 (1986). [CrossRef]
  76. M. R. Luther, R. B. Lee, B. R. Barkstrom, J. E. Cooper, R. D. Cess, and C. H. Duncan, “Solar calibration results from two earth radiation budget experiment nonscanner instruments,” Appl. Opt. 25, 540–545 (1986). [CrossRef]
  77. R. B. Lee, B. R. Barkstrom, and R. D. Cess, “Characteristics of the Earth radiation budget experiment solar monitors,” Appl. Opt. 26, 3090–3096 (1987). [CrossRef]
  78. R. C. Willson, “Active cavity radiometric scale, international pyroheliometric scale, and solar constant,” J. Geophys. Res. 76, 4325–4340 (1971). [CrossRef]
  79. R. C. Willson, “New radiometric techniques and solar constant measurements,” Sol. Energy 14, 203–211 (1973). [CrossRef]
  80. R. C. Willson, “Active cavity radiometer,” Appl. Opt. 12, 810–817 (1973). [CrossRef]
  81. R. C. Willson, “Active cavity radiometer type IV,” Appl. Opt. 18, 179–188 (1979). [CrossRef]
  82. R. C. Willson, S. Gulkis, M. Janssen, H. S. Hudson, and G. A. Chapman, “Observations of solar irradiance variability,” Science 211, 700–702 (1981). [CrossRef]
  83. R. C. Willson and H. S. Hudson, “Solar maximum mission experiment: Initial observations by the active cavity radiometer,” Adv. Space Res. 1, 285–288 (1981). [CrossRef]
  84. R. C. Willson, “Active cavity radiometer type V,” Appl. Opt. 19, 3256–3257 (1980). [CrossRef]
  85. R. C. Willson, “Irradiance observations of SMM, Spacelab 1, UARS, and ATLAS missions,” in The Sun as a Variable Star. Solar and Stellar Irradiance Variations, J. M. Pap, C. Fröhlich, H. S. Hudson, and S. K. Solanski, eds. (Cambridge University, 1994), pp. 54–62.
  86. R. C. Willson and R. Helizon, “EOS/ACRIM III instrumentation,” Proc. SPIE 3750, 233–242 (1999). [CrossRef]
  87. R. C. Willson, “The ACRIMSAT/ACRIM III experiment—extending the precision, long-term total solar irradiance climate database,” The Earth Observer 13(3), 14–17 (2001).
  88. M. Litorja, B. C. Johnson, and J. B. Fowler, “Area measurements of apertures for exo-atmospheric solar irradiance for JPL,” Proc. SPIE 6677, 667708 (2007). [CrossRef]
  89. J. B. Fowler, R. S. Durvasula, and A. C. Parr, “High-accuracy aperture-area measurement facilities at the National Institute of Standards and Technology,” Metrologia 35, 497–500 (1998). [CrossRef]
  90. J. B. Fowler and M. Litorja, “Geometric area measurements of circular apertures for radiometry at NIST,” Metrologia 40, S9–S12 (2003). [CrossRef]
  91. I. Kasa, “A circle fitting procedure and its error analysis,” IEEE Trans. Instrum. Meas. IM-25, 8–14 (1976). [CrossRef]
  92. A. Albano, “Representation of digitized contours in terms of conic arcs and straight-line segments,” Comput. Graph. Image Process. 3, 23–33 (1974). [CrossRef]
  93. Type A uncertainty components are those evaluated using statistical analysis.
  94. B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Monographs on Statistics and Applied Probability (Chapman and Hall, 1993).
  95. M. Litorja, J. B. Fowler, J. Hartmann, N. Fox, M. Stock, A. Razet, B. Khlevnoy, E. Ikonen, M. Machacs, and K. Doytchinov, “Final report on the CCPR-2 supplementary comparison of area measurements of apertures for radiometry,” Metrologia 44, 02002 (2007). [CrossRef]
  96. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement, (Bureau International des Poids et Mesures, Paris, France, 2008).
  97. An uncertainty for an 8 mm diameter aperture was stated to be equal to u(d) at k=2 plus twice the departure from roundness.
  98. W. Finsterle, Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (personal communication, 2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited