OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 8024–8031

Low-delay, high-bandwidth frequency-locking loop of resonator integrated optic gyro with triangular phase modulation

Yinzhou Zhi, Lishuang Feng, Ming Lei, and Kunbo Wang  »View Author Affiliations

Applied Optics, Vol. 52, Issue 33, pp. 8024-8031 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1140 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A frequency-locking loop affects the bandwidth and output of the resonator integrated optic gyro (RIOG). A low-delay, high-bandwidth frequency-locking loop is implemented on a single field-programmable gate array with triangular phase modulation. The signal processing delay is reduced to less than 1 μs. The loop model is set up, and the influences of loop parameters on the bandwidth and unit step response are analyzed; the bandwidth of 10 kHz is obtained with the optimized loop parameters. As a result, the accuracy of the frequency-locking loop is reduced to 1.37 Hz (10 s integrated time). It is equivalent to a rotation rate of 0.005deg/s, which is close to the ultimate sensitivity of the RIOG. Moreover, the bias stability of the RIOG is improved to 0.45deg/s (10 s integrated time) based on the frequency-locking loop.

© 2013 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(140.3370) Lasers and laser optics : Laser gyroscopes
(140.3410) Lasers and laser optics : Laser resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 8, 2013
Revised Manuscript: October 14, 2013
Manuscript Accepted: October 14, 2013
Published: November 14, 2013

Yinzhou Zhi, Lishuang Feng, Ming Lei, and Kunbo Wang, "Low-delay, high-bandwidth frequency-locking loop of resonator integrated optic gyro with triangular phase modulation," Appl. Opt. 52, 8024-8031 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Arditty and H. C. Lefovre, “Sagnac effect in fiber gyroscopes,” Opt. Lett. 6, 401–403 (1981). [CrossRef]
  2. S. Ezekiel and S. R. Balsamo, “Passive ring resonator gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977). [CrossRef]
  3. D. M. Shupe, “Fiber resonator gyroscope: sensitivity and thermal nonreciprocity,” Appl. Opt. 20, 286–289 (1981). [CrossRef]
  4. L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011). [CrossRef]
  5. S. Donati, Electro-optical Instrumentation Sensing and Measuring with Lasers (Prentice-Hall, 2004), pp. 187–233.
  6. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” in ICTON (IEEE Photonics Society, 2012), paper Th.A4.5.
  7. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013). [CrossRef]
  8. F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Theoretical investigation of InP buried ring resonators for new angular velocity sensors,” Opt. Eng. 52, 024601 (2013). [CrossRef]
  9. N. M. Barbour, “Inertial navigation sensors,” (2011).
  10. K. Iwatsuki, M. Saruwatari, M. Kawachi, and H. Yamazaki, “Waveguide-type optical passive ring-resonator gyro using time division detection scheme,” Electron. Lett. 25, 688–689 (1989). [CrossRef]
  11. C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for zero bias stability,” ECIO, Copenhagen, Denmark (2007).
  12. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012). [CrossRef]
  13. C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Eur. Opt. Soc. 8, 13050 (2013).
  14. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011). [CrossRef]
  15. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23, 3916–3924 (1984). [CrossRef]
  16. Z. Jin, Z. Yang, H. Ma, and D. Ying, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007). [CrossRef]
  17. H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011). [CrossRef]
  18. K. Takiguchi and K. Hotate, “Evaluation of the output error in an optical passive ring-resonator gyro with a 90 polarization-axis rotation in the polarization-maintaining fiber resonator,” IEEE Photon. Technol. Lett. 3, 88–90 (1991). [CrossRef]
  19. X. Yu, H. Ma, and Z. Jin, “Improving thermal stability of a resonator fiber optic gyro employing a polarizing resonator,” Opt. Express 21, 358–369 (2013). [CrossRef]
  20. Y. Ren, Z. Jin, Y. Chen, and H. Ma, “Optimization of the resonance frequency servo loop technique in the resonator micro optic gyro,” J. Zhejiang Univ. Sci. C. 12, 942–950 (2011). [CrossRef]
  21. H. Ma, X. Lu, L. Yao, X. Yu, and Z. Jin, “Full investigation of the resonant frequency servo loop for resonator fiber-optic gyro,” Appl. Opt. 51, 5178–5185 (2012). [CrossRef]
  22. H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Tech. L. 25, 198–201 (2013). [CrossRef]
  23. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator micro-optic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000). [CrossRef]
  24. F. Zarinetchi and S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11, 401–403 (1986). [CrossRef]
  25. G. Galzerano and P. Laporta, “Single-frequency diode-pumped Yb:KYF4 laser around 1030 nm,” Opt. Express 15, 3257–3264 (2007).
  26. E. I. Moses and C. L. Tang, “High-sensitivity laser wavelength-regulation spectroscopy,” Opt. Lett. 1, 115–117 (1977). [CrossRef]
  27. G. A. Massey, M. K. Oshman, and R. Targ, “Generation of single-frequency light using the FM laser,” Appl. Phys. Lett. 6, 10–11 (1965). [CrossRef]
  28. Y. Ohtaa, S. Maehar, K. Hasebe, Y. Kurosaki, and M. Ohkawa, “Frequency stabilization of a semiconductor laser using the Rb saturated absorption spectroscopy,” Proc. SPIE 6115, 1–10 (2006).
  29. F. Rogister, D. W. Sukow, A. Gavrielides, P. Mégret, O. Deparis, and M. Blondel, “Experimental demonstration of suppression of low-frequency fluctuations and stabilization of an external-cavity laser diode,” Opt. Lett. 25, 808–810 (2000). [CrossRef]
  30. L. K. Strandiord and G. A. Sanders, “Resonator optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
  31. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25, 4448–4451 (1986). [CrossRef]
  32. L. Feng, M. Lei, H. Liu, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013). [CrossRef]
  33. C. H. Lefevre, The Fiber-Optic Gyroscope (Artech, 1993), pp. 157–167.
  34. K. Ogata, Modern Control Engineering, 5th ed. (Prentice-Hall, 2010), pp. 320–485.
  35. M. Lei, L. Feng, Y. Zhi, and H. Liu, “Effect of intensity variation of laser in resonator, integrated optic gyro,” Appl. Opt. 52, 1–7 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited