OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 8089–8094

Enhanced sensitivity in polymer slot waveguides by atomic layer deposited bilayer coatings

Leila Ahmadi, Jani Tervo, Jyrki Saarinen, and Seppo Honkanen  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 8089-8094 (2013)
http://dx.doi.org/10.1364/AO.52.008089


View Full Text Article

Enhanced HTML    Acrobat PDF (719 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The refractive index sensitivity of a polymer slot waveguide coated with a bilayer of Al2O3/TiO2 was investigated theoretically and optimized for biosensor applications. The influence of atomic-layer-deposition-coated thin high-refractive-index layers on the slot confinement factor and the homogeneous sensitivity of polymer slot waveguides with different geometries were simulated. The results were compared with those of an optimized noncoated polymer slot waveguide, both operating at visible wavelengths. The simulations reveal that the proposed structure offers a significant improvement in the confinement factor and the sensitivity. These calculations present guidelines for the design and fabrication of relatively sensitive polymer slot waveguide devices for low-cost biochemical sensor applications.

© 2013 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides
(250.5460) Optoelectronics : Polymer waveguides
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Optoelectronics

History
Original Manuscript: July 29, 2013
Revised Manuscript: October 14, 2013
Manuscript Accepted: October 21, 2013
Published: November 18, 2013

Citation
Leila Ahmadi, Jani Tervo, Jyrki Saarinen, and Seppo Honkanen, "Enhanced sensitivity in polymer slot waveguides by atomic layer deposited bilayer coatings," Appl. Opt. 52, 8089-8094 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-8089


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors 9, 4751–4765 (2009). [CrossRef]
  2. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  3. R. G. Eldridge, “Water vapor absorption of visible and near-infrared radiation,” Appl. Opt. 6, 709–713 (1967). [CrossRef]
  4. P. Bettotti, A. Pitanti, E. Rigo, F. Leonardis, V. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors 11, 7327–7340 (2011). [CrossRef]
  5. M. Hiltunen, J. Hiltunen, P. Stenberg, E. Heinonen, P. Vahimaa, and P. Karioja, “Polymeric slot waveguide at visible wavelength,” Opt. Lett. 37, 4449–4451 (2012). [CrossRef]
  6. G. Testa and R. Bernini, “Slot and layer-slot waveguide in the visible spectrum,” J. Lightwave Technol. 29, 2979–2984 (2011). [CrossRef]
  7. S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S. D. Lee, and H. Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255, 5466–5470 (2009). [CrossRef]
  8. J. Hiltunen, S. Uusitalo, P. Karioja, S. Pearce, M. Charlton, M. Wang, J. Puustinen, and J. Lappalainen, “Manipulation of optical field distribution in layered composite polymeric inorganic waveguides,” Appl. Phys. Lett. 98, 111113 (2011). [CrossRef]
  9. K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, K. Kukli, P. Heimala, K. Kolari, and M. Leskelä, “Dry-etched silicon-on-insulator waveguides with low propagation and fiber-coupling losses,” J. Lightwave Technol. 23, 3875–3880 (2005). [CrossRef]
  10. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49, 4321–4325 (2010). [CrossRef]
  11. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011). [CrossRef]
  12. T. Kwon, D. Moon, Y. Moon, W. Kim, and J. Park, “Al2O3/TiO2 multilayer passivation layers grown at low temperature for flexible organic devices,” J. Nanosci. Nanotechnol. 12, 3696–3700 (2012). [CrossRef]
  13. C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A 6, 43–50 (2004). [CrossRef]
  14. J. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005). [CrossRef]
  15. N. N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42, 885–890 (2006). [CrossRef]
  16. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989). [CrossRef]
  17. M. Wang, S. Uusitalo, L. Hakalahti, C. Liedert, R. Myllylä, and J. Hiltunen, “Polymeric dual-slab waveguide interferometer for biochemical sensing applications,” Appl. Opt. 51, 1886–1893 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited