OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 8122–8127

Hierarchical radioscopy using polychromatic and partially coherent hard synchrotron radiation

Alexander Rack, Francisco García-Moreno, Lukas Helfen, Manas Mukherjee, Catalina Jiménez, Tatjana Rack, Peter Cloetens, and John Banhart  »View Author Affiliations

Applied Optics, Vol. 52, Issue 33, pp. 8122-8127 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (773 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pushing synchrotron x-ray radiography to increasingly higher image-acquisition rates (currently up to 100,000 fps) while maintaining spatial resolutions in the micrometer range implies drastically reduced fields of view. As a consequence, either imaging a small subregion of the sample with high spatial resolution or only the complete specimen with moderate resolution is applicable. We introduce a concept to overcome this limitation by making use of a semi-transparent x-ray detector positioned close to the investigated sample. The hard x-rays that pass through the sample either create an image on the first detector or keep on propagating until they are captured by a second x-ray detector located further downstream. In this way, a process can be imaged simultaneously in a hierarchical manner within a single exposure and a projection of the complete object with moderate resolution as well as a subregion with high resolution are obtained. As a proof-of-concept experiment, image sequences of an evolving liquid-metal foam are shown, employing frame rates of 1000images/s (1.2 μm pixel size) and 15,000images/s (18.1 μm pixel size) for the first and second detector, respectively.

© 2013 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(320.3980) Ultrafast optics : Microsecond phenomena
(340.6720) X-ray optics : Synchrotron radiation
(340.7440) X-ray optics : X-ray imaging
(110.6915) Imaging systems : Time imaging

ToC Category:
X-ray Optics

Original Manuscript: August 13, 2013
Manuscript Accepted: September 14, 2013
Published: November 18, 2013

Alexander Rack, Francisco García-Moreno, Lukas Helfen, Manas Mukherjee, Catalina Jiménez, Tatjana Rack, Peter Cloetens, and John Banhart, "Hierarchical radioscopy using polychromatic and partially coherent hard synchrotron radiation," Appl. Opt. 52, 8122-8127 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Hartmann, G. Markewitz, U. Rettenmaier, and H. J. Queisser, “High-resolution direct-display x-ray topography,” Appl. Phys. Lett. 27, 308–309 (1975). [CrossRef]
  2. A. Koch, “Lens coupled scintillating screen-CCD x-ray area detector with a high quantum efficiency,” Nucl. Instrum. Methods Phys. Res., Sect. A 348, 654–658 (1994). [CrossRef]
  3. U. Bonse and F. Busch, “X-ray computed microtomography (μCT) using synchrotron radiation (SR),” Prog. Biophys. Molec. Biol. 65, 133–169 (1996). [CrossRef]
  4. A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. A 15, 1940–1951 (1998). [CrossRef]
  5. P. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L. Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile indirect detector design for hard x-ray microimaging,” JINST 7, P09016 (2012). [CrossRef]
  6. A. N. Danilewsky, A. Rack, J. Wittge, T. Weitkamp, R. Simon, H. Riesemeier, and T. Baumbach, “White beam synchrotron topography using a high resolution digital x-ray imaging detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2035–2040 (2008). [CrossRef]
  7. A. Rack, S. Zabler, B. R. Müller, H. Riesemeier, G. Weidemann, A. Lange, J. Goebbels, M. Hentschel, and W. Görner, “High-resolution synchrotron-based radiography and tomography using hard x-rays at the BAMline (BESSY II),” Nucl. Instrum. Methods Phys. Res., Sect. A 586, 327–344 (2008). [CrossRef]
  8. M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, “Fast microtomography using high-energy synchrotron radiation,” Rev. Sci. Instrum. 76, 043702 (2005). [CrossRef]
  9. F. García-Moreno, A. Rack, L. Helfen, T. Baumbach, S. Zabler, N. Babcsán, J. Banhart, T. Martin, C. Ponchut, and M. Di Michiel, “Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy,” Appl. Phys. Lett. 92, 134104 (2008). [CrossRef]
  10. J. Wang, “Ultrafast x-ray imaging of fuel sprays,” in AIP Conference Proceedings (SRI06), J.-Y. Choi and S. Rah, eds. (2007), vol. 879, pp. 1535–1538.
  11. Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008). [CrossRef]
  12. A. Rack, F. García-Moreno, T. Baumbach, and J. Banhart, “Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams,” J. Synchrotron Radiat. 16, 432–434 (2009). [CrossRef]
  13. A. Rack, F. García-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, and S. Zabler, “On the possibilities of hard x-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation,” J. X-Ray Sci. Technol. 18, 429–441 (2010).
  14. K.-C. Lin, C. Rajnicek, J. McCall, C. Carter, and K. Fezzaa, “Investigation of pure- and aerated-liquid jets using ultra-fast x-ray phase contrast imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 194–196 (2011). [CrossRef]
  15. A. Snigirev, I. Snigireva, V. Kohn, and S. Kuznetsov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995). [CrossRef]
  16. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
  17. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996). [CrossRef]
  18. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77, 2961–2964 (1996). [CrossRef]
  19. A. Momose, W. Yashiro, H. Maikusa, and Y. Takeda, “High-speed x-ray phase imaging and x-ray phase tomography with Talbot interferometer and white synchrotron radiation,” Opt. Express 17, 12540–12545 (2009). [CrossRef]
  20. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002). [CrossRef]
  21. S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard X rays,” Rev. Sci. Instrum. 76, 073705 (2005). [CrossRef]
  22. V. G. Kohn, T. S. Argunova, and J. H. Je, “Far-field x-ray phase contrast imaging has no detailed information on the object,” J. Phys. D 43, 442002 (2010).
  23. Photron USA, Inc., FASTCAM SA5 Data Sheet, http://www.photron.com (accessed August 2013).
  24. F. Garcia-Moreno, M. Mukherjee, C. Jimenez, A. Rack, and J. Banhart, “Metal foaming investigated by x-ray radioscopy,” Metals 2, 10–21 (2012). [CrossRef]
  25. H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Real-time x-ray investigation of aluminum foam sandwich production,” Adv. Eng. Mater. 3, 407 (2001). [CrossRef]
  26. H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, and J. Banhart, “Process control in aluminum foam production using real-time x-ray radioscopy,” Adv. Eng. Mater. 4, 814–823 (2002). [CrossRef]
  27. R. Verdejo, F. J. Tapiador, L. Helfen, M. M. Bernal, N. Bitinis, and M. A. Lopez-Manchado, “Fluid dynamics of evolving foams,” Phys. Chem. Chem. Phys. 11, 10860–10866 (2009). [CrossRef]
  28. A. Myagotin, L. Helfen, and T. Baumbach, “Quantitative coalescence measurements for foaming metals by in situ radiography,” Scr. Mater. 67, 775–778 (2012). [CrossRef]
  29. L. Helfen, H. Stanzick, J. Ohser, K. Schladitz, P. Pernot, J. Banhart, and T. Baumbach, “Investigation of the foaming process of metals by synchrotron-radiation imaging,” in Proceedings of SPIE, N. Meyendorf, G. Baaklini, and B. Michel, eds. (2003), vol. 5045, pp. 254–265.
  30. T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the ESRF beamline ID19,” in AIP Conference Proceedings (ICXOM20), M. Denecke and C. T. Walker, eds. (2010), vol. 1221, pp. 33–38.
  31. F. Garcia-Moreno, N. Babcsan, and J. Banhart, “X-ray radioscopy of liquid metalfoams: influence of heating profile, atmosphere and pressure,” Colloids Surf. A 263, 290–294 (2005). [CrossRef]
  32. M. S. del Río and R. J. Dejus, “Xop 2.1—a new version of the x-ray optics software toolkit,” AIP Conf. Proc. 705, 784–787 (2004). [CrossRef]
  33. T. Martin and A. Koch, “Recent developments in x-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13, 180–194 (2006). [CrossRef]
  34. PCO AG, pco.dimax Data Sheet, http://www.pco.de (accessed August 2013).
  35. A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev, and T. Baumbach, “Coalescence analysis for evolving foams via optical flow computation on projection image sequences,” J. Synchrotron Radiat. 19, 483–491 (2012). [CrossRef]
  36. CRYTUR, spol. s r.o., http://www.crytur.cz (accessed August 2013).
  37. P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays,” Appl. Phys. Lett. 75, 2912–2914 (1999). [CrossRef]
  38. G. Martínez-Criado, R. Tucoulou, P. Cloetens, P. Bleuet, S. Bohic, J. Cauzid, I. Kieffer, E. Kosior, S. Labouré, S. Petitgirard, A. Rack, J. A. Sans, J. Segura-Ruiz, H. Suhonen, J. Susini, and J. Villanova, “Status of the hard x-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility,” J. Synchrotron Radiat. 19, 10–18 (2012). [CrossRef]
  39. R. Mokso, F. Marone, S. Irvine, M. Nyvlt, D. Schwyn, K. Mader, G. K. Taylor, H. G. Krapp, M. Skeren, and M. Stampanoni, “Advantages of phase retrieval for fast x-ray tomographic microscopy,” J. Phys. D46 (2013), to be published.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4636 KB)     
» Media 2: AVI (11911 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited