OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 8128–8133

Self-mixing laser Doppler flow sensor: an optofluidic implementation

Milan Nikolić, Elaine Hicks, Yah Leng Lim, Karl Bertling, and Aleksandar D. Rakić  »View Author Affiliations

Applied Optics, Vol. 52, Issue 33, pp. 8128-8133 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (611 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the miniaturization of self-mixing interferometry (SMI) into a microfluidic circuit using an optical fiber, forming an optofluidic device that can be used as a component in lab on a chip systems. We characterize the performance of the device as a fluid velocity (and hence flow) sensor, showing it to produce good accuracy and correlation with theory over a range of velocities from 0.5 to 60mm/s and almost four decades of scatterer concentration. SMI in an optofluidic system has the advantage that only a single path to the optical inspection point is needed, as the laser source is also the receiver of light. In addition, the same system that is used for measuring fluid velocity can be used to measure other quantities such as particle size. The configuration presented is inherently easy to optically align due to the self-aligned property of SMI and divergent nature of light exiting the embedded optical fiber, providing for low-cost manufacturing.

© 2013 Optical Society of America

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: September 5, 2013
Manuscript Accepted: October 18, 2013
Published: November 18, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Milan Nikolić, Elaine Hicks, Yah Leng Lim, Karl Bertling, and Aleksandar D. Rakić, "Self-mixing laser Doppler flow sensor: an optofluidic implementation," Appl. Opt. 52, 8128-8133 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006). [CrossRef]
  2. J. Godin, C.-H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, “Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1, 355–376 (2008). [CrossRef]
  3. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef]
  4. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25, 316–319 (1998). [CrossRef]
  5. R. Lindken, M. Rossi, S. Grosse, and J. Westerweel, “Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines,” Lab Chip 9, 2551–2567 (2009). [CrossRef]
  6. T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001). [CrossRef]
  7. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002). [CrossRef]
  8. F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, and T. M. Smits, “Mini laser-Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984). [CrossRef]
  9. M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows,” Appl. Opt. 33, 5628–5641 (1994). [CrossRef]
  10. C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A 7, S445–S452 (2005). [CrossRef]
  11. S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39, 2574–2580 (2000). [CrossRef]
  12. M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: a theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012). [CrossRef]
  13. L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiére, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
  14. J. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001). [CrossRef]
  15. G. Giuliani and S. Donati, “Laser interferometry,” in Unlocking Dynamical Diversity, D. M. Kane and K. A. Shore, eds. (Wiley, 2005), pp. 217–256.
  16. J. Perchoux, L. Campagnolo, Y. L. Lim, and A. D. Rakic, “Lens-free self-mixing sensor for velocity and vibrations measurements,” in Proceedings of COMMAD 2010 (IEEE, 2010), pp. 43–44.
  17. Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakic, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18, 11720–11727 (2010). [CrossRef]
  18. Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009). [CrossRef]
  19. P. de Groot and G. Gallatin, “Backscatter-modulation velocimetry with an external-cavity laser diode,” Opt. Lett. 14, 165–167 (1989). [CrossRef]
  20. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).
  21. G. Keiser, Optical Fiber Communications3rd ed. (McGraw-Hill, 2000).
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  23. J. E. Mark, Polymer Data Handbook (Oxford University, 1999).
  24. V. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE, 2002).
  25. I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements,” Appl. Opt. 35, 6797–6809 (1996). [CrossRef]
  26. M. J. Shensa, “The discrete wavelet transform—wedding the a Trous and Mallat algorithms,” IEEE Trans. Acoust. Speech Signal Process. 40, 2464–2482 (1992). [CrossRef]
  27. C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
  28. J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert, P. A. Porta, D. P. Curtin, and J. G. McInerney, “Laser Doppler velocimetry with polarization-bistable VCSELs,” IEEE J. Sel. Topics Quantum Electron. 10, 1006–1012 (2004).
  29. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003). [CrossRef]
  30. P. Walstra, J. T. M. Wouters, and T. J. Geurts, Dairy Science and Technology, 2nd ed. (CRC Press, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited