OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 8146–8153

Autofocus for a multiscale gigapixel camera

Tomoya Nakamura, David S. Kittle, Seo Ho Youn, Steven D. Feller, Jun Tanida, and David J. Brady  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 8146-8153 (2013)
http://dx.doi.org/10.1364/AO.52.008146


View Full Text Article

Enhanced HTML    Acrobat PDF (835 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In recent studies, the advanced wide field of view architectures for image reconstruction and exploitation (AWARE) multiscale camera, which is composed of a monocentric objective lens and an array of microcameras, was developed for the realization of snapshot wide field of view and high resolution imaging. This paper describes accelerated autofocus (AF) methods for the AWARE system based on a hierarchical spatial algorithm and an iterative temporal algorithm. In the algorithms, sensor positions of each microcamera are hierarchically scanned with contrast detection to effectively search for a focusing distance. The positions are then updated iteratively for dynamic scenes using temporal information. The algorithms are theoretically analyzed and experimentally demonstrated. The developed AF methods can be used for the realization of the temporal gigapixel imaging by the AWARE system.

© 2013 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.4190) Imaging systems : Multiple imaging
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

History
Original Manuscript: August 14, 2013
Revised Manuscript: October 19, 2013
Manuscript Accepted: October 20, 2013
Published: November 20, 2013

Citation
Tomoya Nakamura, David S. Kittle, Seo Ho Youn, Steven D. Feller, Jun Tanida, and David J. Brady, "Autofocus for a multiscale gigapixel camera," Appl. Opt. 52, 8146-8153 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-8146


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009). [CrossRef]
  2. D. L. Marks and D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” in Imaging Systems, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ITuC2.
  3. D. L. Marks, E. J. Tremblay, J. E. Ford, and D. J. Brady, “Microcamera aperture scale in monocentric gigapixel cameras,” Appl. Opt. 50, 5824–5833 (2011). [CrossRef]
  4. H. S. Son, D. L. Marks, J. Hahn, J. Kim, and D. J. Brady, “Design of a spherical focal surface using close-packed relay optics,” Opt. Express 19, 16132–16138 (2011). [CrossRef]
  5. E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, “Design and scaling of monocentric multiscale imagers,” Appl. Opt. 51, 4691–4702 (2012). [CrossRef]
  6. D. R. Golish, E. M. Vera, K. J. Kelly, Q. Gong, P. A. Jansen, J. M. Hughes, D. S. Kittle, D. J. Brady, and M. E. Gehm, “Development of a scalable image formation pipeline for multiscale gigapixel photography,” Opt. Express 20, 22048–22062 (2012). [CrossRef]
  7. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012). [CrossRef]
  8. D. J. Brady, D. L. Marks, S. D. Feller, M. E. Gehm, D. R. Golish, E. M. Vera, and D. S. Kittle, “Petapixel photography and the limits of camera information capacity,” Proc. Soc. Photo-Opt. Instrum. Eng. 8657, 86570B (2013).
  9. “AWARE2 Multiscale Gigapixel Camera,” http://www.disp.duke.edu/projects/AWARE/ .
  10. D. J. Brady, “Focus in multiscale imaging systems,” in Imaging and Applied Optics Technical Papers, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2B.1.
  11. H. S. Son, A. Johnson, R. A. Stack, J. M. Shaw, P. McLaughlin, D. L. Marks, D. J. Brady, and J. Kim, “Optomechanical design of multiscale gigapixel digital camera,” Appl. Opt. 52, 1541–1549 (2013). [CrossRef]
  12. L. Shih, “Autofocus survey: a comparison of algorithms,” Proc. Soc. Photo-Opt. Instrum. Eng. 6502, 65020B (2007).
  13. F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different autofocus algorithms,” Cytometry 6, 81–91 (1985). [CrossRef]
  14. C. H. Shen and H. H. Chen, “Robust focus measure for low-contrast images,” in IEEE International Conference on Consumer Electronics (IEEE, 2006), pp. 7–11.
  15. X. Xu, Y. Wang, J. Tang, X. Zhang, and X. Liu, “Robust automatic focus algorithm for low contrast images using a new contrast measure,” Sensors 11, 8281–8294 (2011). [CrossRef]
  16. C. Raphael, “Coarse-to-fine dynamic programming,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 1379–1390 (2001). [CrossRef]
  17. K. Ooi, K. Izumi, M. Nozaki, and I. Takeda, “An advanced autofocus system for video camera using quasi condition reasoning,” IEEE Trans. Consum. Electron. 36, 526–530 (1990). [CrossRef]
  18. M. Gamadia and N. Kehtarnavaz, “A real-time continuous automatic focus algorithm for digital cameras,” in IEEE Southwest Symposium on Image Analysis and Interpretation (IEEE, 2006).
  19. D. C. Tsai and H. H. Chen, “Smooth control of continuous autofocus,” in IEEE International Conference on Image Processing (IEEE, 2012).
  20. H. Thanarat, D. Harwood, and L. S. Davis, “A statistical approach for real-time robust background subtraction and shadow detection,” in IEEE International Conference on Computer Vision (IEEE, 1999).
  21. D. G. Lowe, “Object recognition from local scale-invariant features,” in IEEE International Conference on Computer Vision (IEEE, 1999).
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  23. S. Liu and H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express 19, 353–362 (2011). [CrossRef]
  24. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995). [CrossRef]
  25. O. Cossairt, C. Zhou, and S. K. Nayar, “Diffusion coding photography for extended depth of field,” ACM Trans. Graph. 29, 31 (2010). [CrossRef]
  26. G. Häusler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972). [CrossRef]
  27. R. Horisaki, T. Nakamura, and J. Tanida, “Superposition imaging for three-dimensionally space-invariant point spread functions,” Appl. Phys. Express 4, 112501 (2011). [CrossRef]
  28. T. Nakamura, R. Horisaki, and J. Tanida, “Computational superposition compound eye imaging for extended depth-of-field and field-of-view,” Opt. Express 20, 27482–27495 (2012). [CrossRef]
  29. T. Nakamura, R. Horisaki, and J. Tanida, “Computational superposition projector for extended depth of field and field of view,” Opt. Lett. 38, 1560–1562 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (9475 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited