OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 8169–8175

Nonlinear optical and chemical effects in the irradiation of liquid benzene with femtosecond pulses

Stanislav L. Kuzmin, Michal J. Wesolowski, and Walter W. Duley  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 8169-8175 (2013)
http://dx.doi.org/10.1364/AO.52.008169


View Full Text Article

Enhanced HTML    Acrobat PDF (508 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that a spectral resonance between the ππ* absorption band in liquid benzene and the third harmonic (TH) of a propagating 800 nm femtosecond laser beam causes large positive changes in the real refractive index at the TH wavelength. This produces an increase in the third-order optical susceptibility and leads to the enhancement of nonlinear optical effects including TH generation and self-focusing. Enhanced filamentation is observed in liquid benzene, but this effect is not seen in perdeuterated liquid benzene under similar irradiation conditions. Filamentation is associated with the decomposition of benzene molecules, plasma emission from the focal region, and the appearance of carbon nanoparticles. This indicates that a complex chemistry accompanies the onset of filamentation. Chemical products formed under these conditions have been characterized using combined gas chromatography mass spectroscopy techniques. We also find that the presence of a TH filament is indicated by the appearance of a photocurrent and increased electrical conductivity in the solution. This photocurrent is found to be 50–60 times smaller in C6D6 where the ππ* resonance with the TH is much weaker. The intensity dependence of this photocurrent confirms the role played by TH generation in the overall interaction.

© 2013 Optical Society of America

OCIS Codes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(260.3230) Physical optics : Ionization
(260.5130) Physical optics : Photochemistry
(260.5950) Physical optics : Self-focusing

ToC Category:
Physical Optics

History
Original Manuscript: September 20, 2013
Revised Manuscript: October 14, 2013
Manuscript Accepted: October 17, 2013
Published: November 20, 2013

Citation
Stanislav L. Kuzmin, Michal J. Wesolowski, and Walter W. Duley, "Nonlinear optical and chemical effects in the irradiation of liquid benzene with femtosecond pulses," Appl. Opt. 52, 8169-8175 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-8169


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002). [CrossRef]
  2. M. Centini, V. Roppo, E. Fazio, F. Pettazzi, C. Sibilia, J. W. Haus, J. V. Foreman, N. Akozbek, M. J. Bloemer, and M. Scalora, “Inhibition of linear absorption in opaque materials using phase-locked harmonic generation,” Phys. Rev. Lett. 101, 113905 (2008). [CrossRef]
  3. S. L. Chin, W. Liu, F. Theberge, Q. Luo, S. A. Hosseini, V. P. Kandidov, O. G. Kosareva, N. Aközbek, A. Becker, and H. Schroeder, Some Fundamental Concepts of Femtosecond Laser Filamentation (Springer, 2008).
  4. A. Couairona and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  5. C. D’Amico, B. Prade, M. Franco, and A. Mysyrowicz, “Femtosecond filament amplification in liquids,” Appl. Phys. B 85, 49–53 (2006). [CrossRef]
  6. H. Schroeder, S. A. Hosseini, Q. Luo, and S. L. Chin, “Self-steepening is an abrupt process,” Opt. Commun. 266, 302–306 (2006). [CrossRef]
  7. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  8. N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89, 143901 (2002). [CrossRef]
  9. L. Zandee and R. B. Bernstein, “Resonance-enhanced multiphoton ionization and fragmentation of molecular beams: NO, I2, benzene and butadiene,” J. Chem. Phys. 71, 1359–1371 (1979). [CrossRef]
  10. A. Talebpour, A. D. Bandrauk, K. Vijayalakshmi, and S. L. Chin, “Dissociative ionization of benzene in intense ultra-fast laser pulses,” J. Phys. B 33, 4615–4626 (2000). [CrossRef]
  11. D. J. Smith, K. W. D. Ledingham, R. P. Singhal, H. S. Kilic, T. McCanny, A. J. Langley, P. F. Taday, and C. Kosmidis, “Time-of-flight mass spectrometry of aromatic molecules subjected to high intensity laser beams,” Rapid Commun. Mass Spectrom. 12, 813–820 (1998). [CrossRef]
  12. J. Momigny, C. Goffart, and L. D’or, “Photoionization studies by total ionization measurements. I. Benzene and its monohalogeno derivatives,” Int. J. Mass Spectrom. Ion Phys. 1, 53–68 (1968). [CrossRef]
  13. J. H. Miller, L. Andrews, P. A. Lund, and P. N. Schatz, “Argon matrix photolysis and photoionization studies of benzene. Absorption spectrum of benzene cation and benzene dimer cation,” J. Chem. Phys. 73, 4932–4939 (1980). [CrossRef]
  14. P. M. Johnson, “The multiphoton ionization spectrum of benzene,” J. Chem. Phys. 64, 4143–4148 (1976). [CrossRef]
  15. R. Itakura, J. Watanabe, A. Hishikawa, and K. Yamanouchi, “Ionization and fragmentation dynamics of benzene in intense laser fields by tandem mass spectroscopy,” J. Chem. Phys. 114, 5598–5606 (2001). [CrossRef]
  16. V. R. Bhardwaj, K. Vijayalakshmi, and D. Mathur, “Dissociative ionization of benzene in intense laser fields of picosecond duration,” Phys. Rev. A 59, 1392–1398 (1999). [CrossRef]
  17. V. S. Antonov, V. S. Letokhov, and A. N. Shibanov, “Photoionization mass-spectrometry of benzene and benzaldehyde molecules with an excimer KrF laser,” Appl. Phys. 22, 293–297 (1980). [CrossRef]
  18. V. V. Kislov, T. L. Nguyen, A. M. Mebel, S. H. Lin, and S. C. Smith, “Photodissociation of benzene under collision-free conditions: an ab initio/Rice–Ramsperger–Kassel–Marcus study,” J. Chem. Phys. 120, 7008–7017 (2004). [CrossRef]
  19. J. S. Greever, J. B. M. Turner, and J. F. Kauffman, “Multiphoton excited conductance spectroscopy. 1. Application of the Born model to femtosecond laser excited multiphoton ionization of nonpolar liquids,” J. Phys. Chem. A 105, 8635–8641 (2001). [CrossRef]
  20. V. O. Saik and S. Lipsky, “The photoionization spectrum of liquid benzene,” J. Phys. Chem. 98, 11858–11862 (1994). [CrossRef]
  21. T.-W. Scott, A. J. Twarowski, and A.-C. Albrecht, “Multiphoton ionization of liquid benzene: the ionization mechanism,” Chem. Phys. Lett. 66, 1–4 (1979). [CrossRef]
  22. C. M. Evans, E. Morikawa, and G. L. Findley, “Pressure studies of subthreshold photoionization: CH3I, C2H5I, and C6H6 perturbed by Ar and SF6,” Chem. Phys. 264, 419–435 (2001). [CrossRef]
  23. T. Ogawa, M. Mizutani, and T. Inoue, “Dependence of the laser two-photon ionization process in solution on the laser pulse width,” Anal. Chem. 73, 2066–2069 (2001). [CrossRef]
  24. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011). [CrossRef]
  25. T. Nakamura, Y. Mochidzuki, and S. Sato, Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007).
  26. M. J. Wesolowski, S. Kuzmin, B. Moores, B. Wales, R. Karimi, A. A. Zaidi, Z. Leonenko, J. H. Sanderson, and W. W. Duley, “Polyyne synthesis and amorphous carbon nano-particle formation by femtosecond irradiation of benzene,” Carbon 49, 625–630 (2011). [CrossRef]
  27. T. V. K. Sarma and C. Santhamm, “The near ultraviolet absorption spectra of 2,3-, 2,4- and 2,5-dimethylbenzonitriles,” Spectrochim. Acta 43A, 929–937 (1987).
  28. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, 1965).
  29. T. Inagaki, “Absorption spectra of pure liquid benzene in the ultraviolet region,” J. Chem. Phys. 57, 2526–2530 (1972). [CrossRef]
  30. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, 1967), p. 178.
  31. I. A. Shkrob and M. C. Sauer, “Electron localization in liquid acetonitrile,” J. Phys. Chem. A 106, 9120–9131 (2002). [CrossRef]
  32. V. S. Antonov and V. S. Letokhov, “Laser multiphoton and multistep photoionization of molecules and mass spectrometry,” Appl. Phys. 24, 89–106 (1981). [CrossRef]
  33. H. M. Boechat-Roberty, R. Neves, S. Pilling, A. F. Lago, and G. G. B. de Souza, “Dissociation of the benzene molecule by UV and soft x-rays in circumstellar environment,” Mon. Not. R. Astron. Soc. 394, 810–817 (2009). [CrossRef]
  34. W. Fub, W. E. Schmid, and S. A. Trushin, “Time-resolved dissociative intense-laser field ionization for probing dynamics: femtosecond photochemical ring opening of 1,3-cyclohexadiene,” J. Chem. Phys. 112, 8347–8362 (2000). [CrossRef]
  35. Standard Reference Data, NIST: 100 Bureau Drive, Stop 2300 Gaithersburg, MD, 20899–2300.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited