OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 34 — Dec. 1, 2013
  • pp: 8184–8189

Wideband slow light in photonic crystal slab waveguide based on geometry adjustment and optofluidic infiltration

Morteza Janfaza and Mohammad Ali Mansouri-Birjandi  »View Author Affiliations


Applied Optics, Vol. 52, Issue 34, pp. 8184-8189 (2013)
http://dx.doi.org/10.1364/AO.52.008184


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a photonic crystal slab waveguide with wideband slow light, large group index (ng), and very low group velocity dispersion (GVD) has been presented. The structure is designed by shifting the first row of the air holes adjacent to the waveguide center in the longitudinal direction, and optofluidic infiltration in the second row. By applying optimized parameters for the two rows, a flexible control of ng(17.5<ng<133) with large bandwidth (2nm<Δλ<23nm) is obtained. The GVD decreased at the range of 1022s2/m. Numerical simulations are performed by the three-dimensional plane-wave expansion method.

© 2013 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(260.2030) Physical optics : Dispersion
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: July 9, 2013
Revised Manuscript: September 24, 2013
Manuscript Accepted: October 21, 2013
Published: November 21, 2013

Citation
Morteza Janfaza and Mohammad Ali Mansouri-Birjandi, "Wideband slow light in photonic crystal slab waveguide based on geometry adjustment and optofluidic infiltration," Appl. Opt. 52, 8184-8189 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-34-8184


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347–1348 (2005). [CrossRef]
  2. F. Long, H. Tian, and Y. Ji, “A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides,” J. Lightwave Technol. 28, 1139–1143 (2010). [CrossRef]
  3. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006). [CrossRef]
  4. M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000). [CrossRef]
  5. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow light on a photonic chip,” Opt. Express 14, 2317–2322 (2006). [CrossRef]
  6. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3, 206–210 (2009). [CrossRef]
  7. Y. Zhao, H. M. Zhao, X. Y. Zhang, B. Yuan, and S. Zhang, “New mechanisms of slow light and their applications,” Opt. Laser Technol. 41, 517–525 (2009). [CrossRef]
  8. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007). [CrossRef]
  9. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000). [CrossRef]
  10. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulkst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006). [CrossRef]
  11. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  12. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  13. F. Long, H. Tian, and Y. Ji, “Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes,” Appl. Opt. 49, 4808–4813 (2010). [CrossRef]
  14. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007). [CrossRef]
  15. Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 1155–1160 (2013). [CrossRef]
  16. B. Meng, L. L. Wang, W. Q. Huang, X. F. Li, X. Zhai, and H. Zhang, “Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes,” Appl. Opt. 51, 5735–5742 (2012). [CrossRef]
  17. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007). [CrossRef]
  18. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  19. J. T. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  20. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef]
  21. Y. Zhao, Y. N. Zhang, D. Wu, and Q. Wang, “Wideband slow light with large group index and low dispersion in slotted photonic crystal waveguide,” J. Lightwave Technol. 30, 2812–2817 (2012). [CrossRef]
  22. J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010). [CrossRef]
  23. D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef]
  24. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007). [CrossRef]
  25. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010). [CrossRef]
  26. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  27. H. J. Shen and Q. L. Zhang, “Dispersionless slow light by photonic crystal slab waveguide with innermost elliptical air holes,” Optik 122, 1174–1178 (2011). [CrossRef]
  28. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003). [CrossRef]
  29. O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17, 14634–14648 (2009). [CrossRef]
  30. “Introduction to Optical Liquids” (2011), http://www.cargille.com/opticalintro.shtml .
  31. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited