OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 34 — Dec. 1, 2013
  • pp: 8190–8194

Optical processing between two metallically hybrid microdisks

Kai-Jun Che, Mei-Xin Lei, Guo-Qiang Gu, Zhi-Ping Cai, and Yong-Zhen Huang  »View Author Affiliations

Applied Optics, Vol. 52, Issue 34, pp. 8190-8194 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A waveguide is bridged between two metallically hybrid microdisks for achieving nonlocal optical processing. The whispering gallery mode (WGM) is split into two modes, one is intrinsic WGM and the other is oscillating mode (OM) whose photons oscillate between two microdisks through the waveguide. The characteristics of OM on the waveguide’s width and length are studied. The results show the fundamental WGM oscillation only happens at certain lengths and widths of the waveguide, and strong optical interaction between two microdisks is accompanied by a high-loss waveguide. The optical processing through a waveguide between two individual resonators or photon producers may be applied to dynamic control on the photon states.

© 2013 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.3945) Lasers and laser optics : Microcavities
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 29, 2013
Revised Manuscript: September 21, 2013
Manuscript Accepted: October 9, 2013
Published: November 21, 2013

Kai-Jun Che, Mei-Xin Lei, Guo-Qiang Gu, Zhi-Ping Cai, and Yong-Zhen Huang, "Optical processing between two metallically hybrid microdisks," Appl. Opt. 52, 8190-8194 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  2. L. N. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7, 60–82 (2013). [CrossRef]
  3. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett, 81, 2582–2585 (1998). [CrossRef]
  4. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Quantum Electron. 12, 78–85 (2006). [CrossRef]
  5. S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31, 338–340 (2006). [CrossRef]
  6. S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 71–77 (2006). [CrossRef]
  7. J. W. Ryu, S. Y. Lee, C. M. Kim, and Y. J. Park, “Directional interacting whispering-gallery modes in coupled dielectric microdisks,” Phys. Rev. A 74, 013804 (2006). [CrossRef]
  8. S. V. Boriskina, “Coupling of whispering-gallery modes in size mismatched microdisk photonic molecules,” Opt. Lett. 32, 1557–1559 (2007). [CrossRef]
  9. J. J. Li, J. X. Wang, and Y. Z. Huang, “Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks,” Opt. Lett. 32, 1563–1565 (2007). [CrossRef]
  10. S. J. Wang, Y. D. Yang, and Y. Z. Huang, “Analysis of coupled microcircular resonators coupled to a bus waveguide with high output efficiency,” Opt. Lett. 35, 1953–1955 (2010). [CrossRef]
  11. Q. Li, T. Wang, Y. K. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18, 8367–8382 (2010). [CrossRef]
  12. M. Benyoucef, J. B. Shim, J. Wiersig, and O. G. Schmidt, “Quality-factor enhancement of super modes in coupled microdisks,” Opt. Lett. 36, 1317–1319 (2011). [CrossRef]
  13. K. J. Che, M. X. Lei, and Z. P. Cai, “Optical coupling and emission of metal-insulator confined circular resonators,” Opt. Express 21, 4979–4985 (2013). [CrossRef]
  14. Q. Wang, H. Zhao, X. Du, W. C. Zhang, M. Qiu, and Q. Li, “Hybrid photonic-plasmonic molecule based on metal/Si disks,” Opt. Express 21, 11037–11046 (2013). [CrossRef]
  15. A. V. Kanaev, V. N. Astratov, and W. Cai, “Optical coupling at a distance between detuned spherical cavities,” Appl. Phys. Lett. 88, 111111 (2006). [CrossRef]
  16. L. I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, and A. Tünnermann, “Optical coupling of fundamental whispering-gallery modes in bispheres,” Phys. Rev. A 77, 051801 (2008). [CrossRef]
  17. S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres,” Opt. Express 14, 9460–9466 (2006). [CrossRef]
  18. S. Z. Deng, W. Cai, and V. N. Astratov, “Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides,” Opt. Express 12, 6468–6480 (2004). [CrossRef]
  19. M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007). [CrossRef]
  20. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaître, and I. Sagnes, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010). [CrossRef]
  21. K. Sebald, M. Seyfried, S. Klembt, and C. Kruse,” Optical properties of photonic molecules and elliptical pillars made of ZnSe-based microcavities,” Opt. Express 19, 19422–19429 (2011). [CrossRef]
  22. B. Peng, Ş. K. Özdemir, J. G. Zhu, and L. Yang, “Photonic molecules formed by coupled hybrid resonators,” Opt. Lett. 37, 3435–3437 (2012). [CrossRef]
  23. S. V. Boriskina and L. D. Negro, “Self-referenced photonic molecule bio(chemical)sensor,” Opt. Lett. 35, 2496–2498 (2010). [CrossRef]
  24. J. W. Ryu, J. H. Cho, C. M. Kim, S. Shinohara, and S. W. Kim, “Terahertz beat frequency generation from two-mode lasing operation of coupled microdisk laser,” Opt. Lett. 37, 3210–3212 (2012). [CrossRef]
  25. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. deWaardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Ntzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  26. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261–1263 (2008). [CrossRef]
  27. K. J. Che, Q. F. Yao, Y. Z. Huang, Z. P. Cai, Y. D. Yang, and Y. Du, “Multiple-port InP/InGaAsP square-resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1656–1661 (2011). [CrossRef]
  28. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1120 (1983). [CrossRef]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics-The Finite-Difference Time-Domain Method, 3rd ed. (Artech, 2005).
  30. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223–225 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited