OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 34 — Dec. 1, 2013
  • pp: 8199–8204

Triple-core collinear and noncollinear plasmonic photonic crystal fiber couplers

Susobhan Das, Raktim Haldar, and Shailendra K. Varshney  »View Author Affiliations


Applied Optics, Vol. 52, Issue 34, pp. 8199-8204 (2013)
http://dx.doi.org/10.1364/AO.52.008199


View Full Text Article

Enhanced HTML    Acrobat PDF (727 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Numerical analysis of single and multiple gold nanowires embedded in triple cores arranged in collinear and noncollinear configurations in photonic crystal fibers (PCFs) is reported. A full-vectorial finite element method is used to achieve coupling characteristics of plasmonic PCF couplers for both x and y polarizations. It is demonstrated numerically that the PCF plasmonic couplers exhibit polarization-independent tunable broadband filter characteristics that can be tuned according to the diameter of the embedded gold rod(s).

© 2013 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(240.6680) Optics at surfaces : Surface plasmons
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 26, 2013
Revised Manuscript: October 22, 2013
Manuscript Accepted: October 25, 2013
Published: November 22, 2013

Citation
Susobhan Das, Raktim Haldar, and Shailendra K. Varshney, "Triple-core collinear and noncollinear plasmonic photonic crystal fiber couplers," Appl. Opt. 52, 8199-8204 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-34-8199


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University, 2006).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).
  3. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010). [CrossRef]
  4. F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. Nanotechnol. 9, 55–61 (2010). [CrossRef]
  5. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24, 1423–1429 (2007). [CrossRef]
  6. C. H. Chen and K. S. Liao, “1×N plasmonic power splitters based on metal-insulator-metal waveguides,” Opt. Express 21, 4036–4043 (2013). [CrossRef]
  7. A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011). [CrossRef]
  8. P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006). [CrossRef]
  9. H. Tyagi, M. Schmidt, L. P. Sempere, and P. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16, 17227–17236 (2008). [CrossRef]
  10. H. Tyagi, H. Lee, P. Uebel, M. Schmidt, N. Joly, M. Scharrer, and P. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010). [CrossRef]
  11. G. Ren, P. Shum, X. Yu, J. J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun. 281, 1598–1606 (2008). [CrossRef]
  12. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nanowires in microstructured fibers,” Opt. Express 19, 12180–12189 (2011). [CrossRef]
  13. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003). [CrossRef]
  14. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12, 3940–3946 (2004). [CrossRef]
  15. S. K. Varshney, K. Saitoh, R. K. Sinha, and M. Koshiba, “Coupling characteristics of multicore photonic crystal fiber-based 1×4 power splitters,” J. Lightwave Technol. 27, 2062–2068 (2009). [CrossRef]
  16. S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012). [CrossRef]
  17. P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express 21, 5232–5238 (2013). [CrossRef]
  18. B. Sun, M. Y. Chen, J. Zhou, and Y. K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013). [CrossRef]
  19. P. Uebel, M. A. Schmidt, H. W. Lee, and P. St. J. Russell, “Polarization-resolved near-field mapping of a coupled plasmonic waveguide array,” Opt. Express 20, 28409–28417 (2012). [CrossRef]
  20. H. W. Lee, M. A. Schmidt, and P. St. J. Russell, “Excitation of a nanowire ‘molecule’ in gold-filled photonic crystal fiber,” Opt. Lett. 37, 2946–2948 (2012). [CrossRef]
  21. Y. H. Ja, “Optical vernier filter with fiber grating Fabry–Perot resonators,” Appl. Opt. 34, 6164–6167 (1995). [CrossRef]
  22. M. A. Schmidt and P. S. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16, 13617–13623 (2008). [CrossRef]
  23. A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1988).
  24. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006). [CrossRef]
  25. K. Okamoto, Fundamental of Optical Waveguides, 2nd ed. (Academic, 2006).
  26. N. Kishi and E. Yamashita, “A simple coupled-mode analysis method for multiple-core optical fiber and coupled dielectric waveguide structures,” IEEE Trans. Microwave Theor. Tech. 36, 1861–1868 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited